These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

199 related articles for article (PubMed ID: 33075662)

  • 1. Endothelialization of PDMS-based microfluidic devices under high shear stress conditions.
    Siddique A; Pause I; Narayan S; Kruse L; Stark RW
    Colloids Surf B Biointerfaces; 2021 Jan; 197():111394. PubMed ID: 33075662
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Improved cell adhesion under shear stress in PDMS microfluidic devices.
    Siddique A; Meckel T; Stark RW; Narayan S
    Colloids Surf B Biointerfaces; 2017 Feb; 150():456-464. PubMed ID: 27847226
    [TBL] [Abstract][Full Text] [Related]  

  • 3. EndOxy: Mid-term stability and shear stress resistance of endothelial cells on PDMS gas exchange membranes.
    Hellmann A; Klein S; Hesselmann F; Djeljadini S; Schmitz-Rode T; Jockenhoevel S; Cornelissen CG; Thiebes AL
    Artif Organs; 2020 Oct; 44(10):E419-E433. PubMed ID: 32320079
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Evaluating the Effect of Shear Stress on Graft-To Zwitterionic Polycarboxybetaine Coating Stability Using a Flow Cell.
    Belanger A; Decarmine A; Jiang S; Cook K; Amoako KA
    Langmuir; 2019 Feb; 35(5):1984-1988. PubMed ID: 30299969
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Characterization of four functional biocompatible pressure-sensitive adhesives for rapid prototyping of cell-based lab-on-a-chip and organ-on-a-chip systems.
    Kratz SRA; Eilenberger C; Schuller P; Bachmann B; Spitz S; Ertl P; Rothbauer M
    Sci Rep; 2019 Jun; 9(1):9287. PubMed ID: 31243326
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Surface Modification of PDMS-Based Microfluidic Devices with Collagen Using Polydopamine as a Spacer to Enhance Primary Human Bronchial Epithelial Cell Adhesion.
    Dabaghi M; Shahriari S; Saraei N; Da K; Chandiramohan A; Selvaganapathy PR; Hirota JA
    Micromachines (Basel); 2021 Jan; 12(2):. PubMed ID: 33530564
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The effects of poly(dimethylsiloxane) surface silanization on the mesenchymal stem cell fate.
    Chuah YJ; Kuddannaya S; Lee MH; Zhang Y; Kang Y
    Biomater Sci; 2015 Feb; 3(2):383-90. PubMed ID: 26218129
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Surface Modification Techniques for Endothelial Cell Seeding in PDMS Microfluidic Devices.
    Akther F; Yakob SB; Nguyen NT; Ta HT
    Biosensors (Basel); 2020 Nov; 10(11):. PubMed ID: 33228050
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Covalent Immobilization of Collagen Type I to a Polydimethylsiloxane Surface for Preventing Cell Detachment by Retaining Collagen Molecules under Uniaxial Cyclic Mechanical Stretching Stress.
    Mori K; Kataoka K; Akiyama Y; Asahi T
    Biomacromolecules; 2023 Nov; 24(11):5035-5045. PubMed ID: 37800307
    [TBL] [Abstract][Full Text] [Related]  

  • 10. An easy to assemble microfluidic perfusion device with a magnetic clamp.
    Tkachenko E; Gutierrez E; Ginsberg MH; Groisman A
    Lab Chip; 2009 Apr; 9(8):1085-95. PubMed ID: 19350090
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A portable pressure pump for microfluidic lab-on-a-chip systems using a porous polydimethylsiloxane (PDMS) sponge.
    Cha KJ; Kim DS
    Biomed Microdevices; 2011 Oct; 13(5):877-83. PubMed ID: 21698383
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Desktop aligner for fabrication of multilayer microfluidic devices.
    Li X; Yu ZT; Geraldo D; Weng S; Alve N; Dun W; Kini A; Patel K; Shu R; Zhang F; Li G; Jin Q; Fu J
    Rev Sci Instrum; 2015 Jul; 86(7):075008. PubMed ID: 26233409
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cardiac and lung endothelial cells in response to fluid shear stress on physiological matrix stiffness and composition.
    Bacci C; Wong V; Barahona V; Merna N
    Microcirculation; 2021 Jan; 28(1):e12659. PubMed ID: 32945052
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Conventional and emerging strategies for the fabrication and functionalization of PDMS-based microfluidic devices.
    Shakeri A; Khan S; Didar TF
    Lab Chip; 2021 Aug; 21(16):3053-3075. PubMed ID: 34286800
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Chemical and physical modifications to poly(dimethylsiloxane) surfaces affect adhesion of Caco-2 cells.
    Wang L; Sun B; Ziemer KS; Barabino GA; Carrier RL
    J Biomed Mater Res A; 2010 Jun; 93(4):1260-71. PubMed ID: 19827104
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Biomimetic microfluidic device for in vitro antihypertensive drug evaluation.
    Li L; Lv X; Ostrovidov S; Shi X; Zhang N; Liu J
    Mol Pharm; 2014 Jul; 11(7):2009-15. PubMed ID: 24673554
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Stability of Polyethylene Glycol and Zwitterionic Surface Modifications in PDMS Microfluidic Flow Chambers.
    Plegue TJ; Kovach KM; Thompson AJ; Potkay JA
    Langmuir; 2018 Jan; 34(1):492-502. PubMed ID: 29231737
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Integration of Electrospun Membranes into Low-Absorption Thermoplastic Organ-on-Chip.
    Chuchuy J; Rogal J; Ngo T; Stadelmann K; Antkowiak L; Achberger K; Liebau S; Schenke-Layland K; Loskill P
    ACS Biomater Sci Eng; 2021 Jul; 7(7):3006-3017. PubMed ID: 33591723
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Production of reactive oxygen species in endothelial cells under different pulsatile shear stresses and glucose concentrations.
    Chin LK; Yu JQ; Fu Y; Yu T; Liu AQ; Luo KQ
    Lab Chip; 2011 Jun; 11(11):1856-63. PubMed ID: 21373653
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Poly(dimethylsiloxane) thin films as biocompatible coatings for microfluidic devices: cell culture and flow studies with glial cells.
    Peterson SL; McDonald A; Gourley PL; Sasaki DY
    J Biomed Mater Res A; 2005 Jan; 72(1):10-8. PubMed ID: 15534867
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.