BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

1136 related articles for article (PubMed ID: 33075675)

  • 1. The optimisation of deep neural networks for segmenting multiple knee joint tissues from MRIs.
    Kessler DA; MacKay JW; Crowe VA; Henson FMD; Graves MJ; Gilbert FJ; Kaggie JD
    Comput Med Imaging Graph; 2020 Dec; 86():101793. PubMed ID: 33075675
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Automated cartilage and meniscus segmentation of knee MRI with conditional generative adversarial networks.
    Gaj S; Yang M; Nakamura K; Li X
    Magn Reson Med; 2020 Jul; 84(1):437-449. PubMed ID: 31793071
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Deep convolutional neural network for segmentation of knee joint anatomy.
    Zhou Z; Zhao G; Kijowski R; Liu F
    Magn Reson Med; 2018 Dec; 80(6):2759-2770. PubMed ID: 29774599
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Automatic knee cartilage and bone segmentation using multi-stage convolutional neural networks: data from the osteoarthritis initiative.
    Gatti AA; Maly MR
    MAGMA; 2021 Dec; 34(6):859-875. PubMed ID: 34101071
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Automated segmentation of knee bone and cartilage combining statistical shape knowledge and convolutional neural networks: Data from the Osteoarthritis Initiative.
    Ambellan F; Tack A; Ehlke M; Zachow S
    Med Image Anal; 2019 Feb; 52():109-118. PubMed ID: 30529224
    [TBL] [Abstract][Full Text] [Related]  

  • 6. SUSAN: segment unannotated image structure using adversarial network.
    Liu F
    Magn Reson Med; 2019 May; 81(5):3330-3345. PubMed ID: 30536427
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Use of 2D U-Net Convolutional Neural Networks for Automated Cartilage and Meniscus Segmentation of Knee MR Imaging Data to Determine Relaxometry and Morphometry.
    Norman B; Pedoia V; Majumdar S
    Radiology; 2018 Jul; 288(1):177-185. PubMed ID: 29584598
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Semi-supervised learning for automatic segmentation of the knee from MRI with convolutional neural networks.
    Burton W; Myers C; Rullkoetter P
    Comput Methods Programs Biomed; 2020 Jun; 189():105328. PubMed ID: 31958580
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Entropy and distance maps-guided segmentation of articular cartilage: data from the Osteoarthritis Initiative.
    Li Z; Chen K; Liu P; Chen X; Zheng G
    Int J Comput Assist Radiol Surg; 2022 Mar; 17(3):553-560. PubMed ID: 34988758
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Automated fibroglandular tissue segmentation in breast MRI using generative adversarial networks.
    Ma X; Wang J; Zheng X; Liu Z; Long W; Zhang Y; Wei J; Lu Y
    Phys Med Biol; 2020 May; 65(10):105006. PubMed ID: 32155611
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Automated tibiofemoral joint segmentation based on deeply supervised 2D-3D ensemble U-Net: Data from the Osteoarthritis Initiative.
    Latif MHA; Faye I
    Artif Intell Med; 2021 Dec; 122():102213. PubMed ID: 34823835
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Shape constrained fully convolutional DenseNet with adversarial training for multiorgan segmentation on head and neck CT and low-field MR images.
    Tong N; Gou S; Yang S; Cao M; Sheng K
    Med Phys; 2019 Jun; 46(6):2669-2682. PubMed ID: 31002188
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fully automatic multi-organ segmentation for head and neck cancer radiotherapy using shape representation model constrained fully convolutional neural networks.
    Tong N; Gou S; Yang S; Ruan D; Sheng K
    Med Phys; 2018 Oct; 45(10):4558-4567. PubMed ID: 30136285
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Deep convolutional neural network and 3D deformable approach for tissue segmentation in musculoskeletal magnetic resonance imaging.
    Liu F; Zhou Z; Jang H; Samsonov A; Zhao G; Kijowski R
    Magn Reson Med; 2018 Apr; 79(4):2379-2391. PubMed ID: 28733975
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Automated segmentation of the knee for age assessment in 3D MR images using convolutional neural networks.
    Pröve PL; Jopp-van Well E; Stanczus B; Morlock MM; Herrmann J; Groth M; Säring D; Auf der Mauer M
    Int J Legal Med; 2019 Jul; 133(4):1191-1205. PubMed ID: 30392059
    [TBL] [Abstract][Full Text] [Related]  

  • 16. CAN3D: Fast 3D medical image segmentation via compact context aggregation.
    Dai W; Woo B; Liu S; Marques M; Engstrom C; Greer PB; Crozier S; Dowling JA; Chandra SS
    Med Image Anal; 2022 Nov; 82():102562. PubMed ID: 36049450
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Automated cartilage segmentation and quantification using 3D ultrashort echo time (UTE) cones MR imaging with deep convolutional neural networks.
    Xue YP; Jang H; Byra M; Cai ZY; Wu M; Chang EY; Ma YJ; Du J
    Eur Radiol; 2021 Oct; 31(10):7653-7663. PubMed ID: 33783571
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Automated Knee MR Images Segmentation of Anterior Cruciate Ligament Tears.
    Awan MJ; Rahim MSM; Salim N; Rehman A; Garcia-Zapirain B
    Sensors (Basel); 2022 Feb; 22(4):. PubMed ID: 35214451
    [TBL] [Abstract][Full Text] [Related]  

  • 19. LSW-Net: Lightweight Deep Neural Network Based on Small-World properties for Spine MR Image Segmentation.
    He S; Li Q; Li X; Zhang M
    J Magn Reson Imaging; 2023 Dec; 58(6):1762-1776. PubMed ID: 37118994
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Using deep learning to segment breast and fibroglandular tissue in MRI volumes.
    Dalmış MU; Litjens G; Holland K; Setio A; Mann R; Karssemeijer N; Gubern-Mérida A
    Med Phys; 2017 Feb; 44(2):533-546. PubMed ID: 28035663
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 57.