These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

166 related articles for article (PubMed ID: 33075754)

  • 1. Effect of wing-wing interaction coupled with morphology and kinematic features of damselflies.
    Lai YH; Lin YJ; Chang SK; Yang JT
    Bioinspir Biomim; 2020 Dec; 16(1):. PubMed ID: 33075754
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Flight Maneuver of a Damselfly with Phase Modulation of the Wings.
    Lai YH; Ma JF; Yang JT
    Integr Comp Biol; 2021 Jul; 61(1):20-36. PubMed ID: 33710279
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effects of phase lag on the hovering flight of damselfly and dragonfly.
    Zou PY; Lai YH; Yang JT
    Phys Rev E; 2019 Dec; 100(6-1):063102. PubMed ID: 31962416
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Kinematic compensation for wing loss in flying damselflies.
    Kassner Z; Dafni E; Ribak G
    J Insect Physiol; 2016 Feb; 85():1-9. PubMed ID: 26598807
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Aerodynamic characteristics along the wing span of a dragonfly
    Hefler C; Qiu H; Shyy W
    J Exp Biol; 2018 Oct; 221(Pt 19):. PubMed ID: 30108128
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The fluid dynamics of flight control by kinematic phase lag variation between two robotic insect wings.
    Maybury WJ; Lehmann FO
    J Exp Biol; 2004 Dec; 207(Pt 26):4707-26. PubMed ID: 15579564
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Wing kinematics measurement and aerodynamics of a dragonfly in turning flight.
    Li C; Dong H
    Bioinspir Biomim; 2017 Feb; 12(2):026001. PubMed ID: 28059781
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Analyzing the kinematics and longitudinal aerodynamics of a four-wing bionic aircraft.
    Wang L; Shi Z; Geng X; Tong S; Chen Z
    Bioinspir Biomim; 2024 Feb; 19(2):. PubMed ID: 38306675
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Aerodynamics and flow features of a damselfly in takeoff flight.
    Bode-Oke AT; Zeyghami S; Dong H
    Bioinspir Biomim; 2017 Sep; 12(5):056006. PubMed ID: 28699620
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A computational study of the aerodynamics and forewing-hindwing interaction of a model dragonfly in forward flight.
    Wang JK; Sun M
    J Exp Biol; 2005 Oct; 208(Pt 19):3785-804. PubMed ID: 16169955
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Computational investigation of wing-body interaction and its lift enhancement effect in hummingbird forward flight.
    Wang J; Ren Y; Li C; Dong H
    Bioinspir Biomim; 2019 Jun; 14(4):046010. PubMed ID: 31096194
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of stroke plane inclination on the hovering aerodynamic performance of tandem flapping foils.
    Tiwari S; Chandel S
    Bioinspir Biomim; 2024 Jan; 19(2):. PubMed ID: 38176109
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The impact of dragonfly wing deformations on aerodynamic performance during forward flight.
    Shumway N; Gabryszuk M; Laurence S
    Bioinspir Biomim; 2020 Feb; 15(2):026005. PubMed ID: 31747648
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Bioinspiration of the vein structure of dragonfly wings on its flight characteristics.
    Liu C; Du R; Li F; Sun J
    Microsc Res Tech; 2022 Mar; 85(3):829-839. PubMed ID: 34581475
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Wing-wake interaction: comparison of 2D and 3D flapping wings in hover flight.
    Lee YJ; Lua KB
    Bioinspir Biomim; 2018 Sep; 13(6):066003. PubMed ID: 30132443
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Flight of the dragonflies and damselflies.
    Bomphrey RJ; Nakata T; Henningsson P; Lin HT
    Philos Trans R Soc Lond B Biol Sci; 2016 Sep; 371(1704):. PubMed ID: 27528779
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The effects of wing twist in slow-speed flapping flight of birds: trading brute force against efficiency.
    Thielicke W; Stamhuis EJ
    Bioinspir Biomim; 2018 Aug; 13(5):056015. PubMed ID: 30043756
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Improvement of the aerodynamic performance by wing flexibility and elytra--hind wing interaction of a beetle during forward flight.
    Le TQ; Truong TV; Park SH; Quang Truong T; Ko JH; Park HC; Byun D
    J R Soc Interface; 2013 Aug; 10(85):20130312. PubMed ID: 23740486
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Wing-wake interaction destabilizes hover equilibrium of a flapping insect-scale wing.
    Bluman J; Kang CK
    Bioinspir Biomim; 2017 Jun; 12(4):046004. PubMed ID: 28463224
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Comparative analysis of deformation behaviors of dragonfly wing under aerodynamic and inertial forces.
    Hou D; Zhong Z
    Comput Biol Med; 2022 Jun; 145():105421. PubMed ID: 35366473
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.