These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
110 related articles for article (PubMed ID: 33075863)
1. Precision and dissipation of a stochastic Turing pattern. Rana S; Barato AC Phys Rev E; 2020 Sep; 102(3-1):032135. PubMed ID: 33075863 [TBL] [Abstract][Full Text] [Related]
2. Free energy dissipation enhances spatial accuracy and robustness of self-positioned Turing pattern in small biochemical systems. Zhang D; Zhang C; Ouyang Q; Tu Y J R Soc Interface; 2023 Jul; 20(204):20230276. PubMed ID: 37403484 [TBL] [Abstract][Full Text] [Related]
3. Nonequilibrium phase transitions and pattern formation as consequences of second-order thermodynamic induction. Patitsas SN Phys Rev E; 2019 Aug; 100(2-1):022116. PubMed ID: 31574770 [TBL] [Abstract][Full Text] [Related]
4. Stochastic Turing patterns in the Brusselator model. Biancalani T; Fanelli D; Di Patti F Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Apr; 81(4 Pt 2):046215. PubMed ID: 20481815 [TBL] [Abstract][Full Text] [Related]
5. Energetic and entropic cost due to overlapping of Turing-Hopf instabilities in the presence of cross diffusion. Kumar P; Gangopadhyay G Phys Rev E; 2020 Apr; 101(4-1):042204. PubMed ID: 32422772 [TBL] [Abstract][Full Text] [Related]
6. Information Thermodynamics of Turing Patterns. Falasco G; Rao R; Esposito M Phys Rev Lett; 2018 Sep; 121(10):108301. PubMed ID: 30240244 [TBL] [Abstract][Full Text] [Related]
7. Stochastic simulation of reaction-diffusion systems: A fluctuating-hydrodynamics approach. Kim C; Nonaka A; Bell JB; Garcia AL; Donev A J Chem Phys; 2017 Mar; 146(12):124110. PubMed ID: 28388111 [TBL] [Abstract][Full Text] [Related]
8. Particle-based simulations of polarity establishment reveal stochastic promotion of Turing pattern formation. Pablo M; Ramirez SA; Elston TC PLoS Comput Biol; 2018 Mar; 14(3):e1006016. PubMed ID: 29529021 [TBL] [Abstract][Full Text] [Related]
9. Noise-reversed stability of Turing patterns versus Hopf oscillations near codimension-two conditions. Alonso S; Sagués F Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Sep; 80(3 Pt 2):035203. PubMed ID: 19905167 [TBL] [Abstract][Full Text] [Related]
10. Turing pattern formation in fractional activator-inhibitor systems. Henry BI; Langlands TA; Wearne SL Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Aug; 72(2 Pt 2):026101. PubMed ID: 16196638 [TBL] [Abstract][Full Text] [Related]
11. Turing pattern formation in the Brusselator system with nonlinear diffusion. Gambino G; Lombardo MC; Sammartino M; Sciacca V Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Oct; 88(4):042925. PubMed ID: 24229267 [TBL] [Abstract][Full Text] [Related]
12. Stochastic Turing patterns: analysis of compartment-based approaches. Cao Y; Erban R Bull Math Biol; 2014 Dec; 76(12):3051-69. PubMed ID: 25421150 [TBL] [Abstract][Full Text] [Related]
13. Turing pattern formation in coupled reaction-diffusion system with distributed delays. Ji L; Li QS J Chem Phys; 2005 Sep; 123(9):94509. PubMed ID: 16164355 [TBL] [Abstract][Full Text] [Related]
14. Turing patterns mediated by network topology in homogeneous active systems. Mimar S; Juane MM; Park J; Muñuzuri AP; Ghoshal G Phys Rev E; 2019 Jun; 99(6-1):062303. PubMed ID: 31330727 [TBL] [Abstract][Full Text] [Related]
15. Nanosize pattern formation in overdamped stochastic reaction-diffusion systems with interacting adsorbate. Kharchenko VO; Kharchenko DO Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Oct; 86(4 Pt 1):041143. PubMed ID: 23214565 [TBL] [Abstract][Full Text] [Related]
16. Noise-induced formation of heterogeneous patterns in the Turing stability zones of diffusion systems. Bashkirtseva I; Pankratov A; Ryashko L J Phys Condens Matter; 2022 Sep; 34(44):. PubMed ID: 36001986 [TBL] [Abstract][Full Text] [Related]
17. Pattern formation induced by internal microscopic fluctuations. Wang H; Fu Z; Xu X; Ouyang Q J Phys Chem A; 2007 Feb; 111(7):1265-70. PubMed ID: 17256832 [TBL] [Abstract][Full Text] [Related]
18. Oscillations in feedback-driven systems: Thermodynamics and noise. De Martino D; Barato AC Phys Rev E; 2019 Dec; 100(6-1):062123. PubMed ID: 31962493 [TBL] [Abstract][Full Text] [Related]
19. Stochastic thermodynamics of chemical reactions coupled to finite reservoirs: A case study for the Brusselator. Fritz JH; Nguyen B; Seifert U J Chem Phys; 2020 Jun; 152(23):235101. PubMed ID: 32571070 [TBL] [Abstract][Full Text] [Related]
20. Stochastic reaction and diffusion on growing domains: understanding the breakdown of robust pattern formation. Woolley TE; Baker RE; Gaffney EA; Maini PK Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Oct; 84(4 Pt 2):046216. PubMed ID: 22181254 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]