These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

174 related articles for article (PubMed ID: 33075869)

  • 1. Reflected fractional Brownian motion in one and higher dimensions.
    Vojta T; Halladay S; Skinner S; Janušonis S; Guggenberger T; Metzler R
    Phys Rev E; 2020 Sep; 102(3-1):032108. PubMed ID: 33075869
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Fractional Brownian motion with a reflecting wall.
    Wada AHO; Vojta T
    Phys Rev E; 2018 Feb; 97(2-1):020102. PubMed ID: 29548098
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Anomalous diffusion, aging, and nonergodicity of scaled Brownian motion with fractional Gaussian noise: overview of related experimental observations and models.
    Wang W; Metzler R; Cherstvy AG
    Phys Chem Chem Phys; 2022 Aug; 24(31):18482-18504. PubMed ID: 35838015
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Predicting the distribution of serotonergic axons: a supercomputing simulation of reflected fractional Brownian motion in a 3D-mouse brain model.
    Janušonis S; Haiman JH; Metzler R; Vojta T
    Front Comput Neurosci; 2023; 17():1189853. PubMed ID: 37265780
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Path integrals for fractional Brownian motion and fractional Gaussian noise.
    Meerson B; Bénichou O; Oshanin G
    Phys Rev E; 2022 Dec; 106(6):L062102. PubMed ID: 36671110
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Probability density of the fractional Langevin equation with reflecting walls.
    Vojta T; Skinner S; Metzler R
    Phys Rev E; 2019 Oct; 100(4-1):042142. PubMed ID: 31770994
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Anomalous diffusion, nonergodicity, non-Gaussianity, and aging of fractional Brownian motion with nonlinear clocks.
    Liang Y; Wang W; Metzler R; Cherstvy AG
    Phys Rev E; 2023 Sep; 108(3-1):034113. PubMed ID: 37849140
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Time averaging and emerging nonergodicity upon resetting of fractional Brownian motion and heterogeneous diffusion processes.
    Wang W; Cherstvy AG; Kantz H; Metzler R; Sokolov IM
    Phys Rev E; 2021 Aug; 104(2-1):024105. PubMed ID: 34525678
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Serotonergic Axons as Fractional Brownian Motion Paths: Insights Into the Self-Organization of Regional Densities.
    Janušonis S; Detering N; Metzler R; Vojta T
    Front Comput Neurosci; 2020; 14():56. PubMed ID: 32670042
    [TBL] [Abstract][Full Text] [Related]  

  • 10. First passage times for a tracer particle in single file diffusion and fractional Brownian motion.
    Sanders LP; Ambjörnsson T
    J Chem Phys; 2012 May; 136(17):175103. PubMed ID: 22583268
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Fractional Brownian motion with random Hurst exponent: Accelerating diffusion and persistence transitions.
    Balcerek M; Burnecki K; Thapa S; Wyłomańska A; Chechkin A
    Chaos; 2022 Sep; 32(9):093114. PubMed ID: 36182362
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Anomalous diffusion and nonergodicity for heterogeneous diffusion processes with fractional Gaussian noise.
    Wang W; Cherstvy AG; Liu X; Metzler R
    Phys Rev E; 2020 Jul; 102(1-1):012146. PubMed ID: 32794926
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Geometrical optics of large deviations of fractional Brownian motion.
    Meerson B; Oshanin G
    Phys Rev E; 2022 Jun; 105(6-1):064137. PubMed ID: 35854589
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A Novel Fractional Brownian Dynamics Method for Simulating the Dynamics of Confined Bottle-Brush Polymers in Viscoelastic Solution.
    Yu S; Chu R; Wu G; Meng X
    Polymers (Basel); 2024 Feb; 16(4):. PubMed ID: 38399901
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Inertia triggers nonergodicity of fractional Brownian motion.
    Cherstvy AG; Wang W; Metzler R; Sokolov IM
    Phys Rev E; 2021 Aug; 104(2-1):024115. PubMed ID: 34525594
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Modeling of locally self-similar processes using multifractional Brownian motion of Riemann-Liouville type.
    Muniandy SV; Lim SC
    Phys Rev E Stat Nonlin Soft Matter Phys; 2001 Apr; 63(4 Pt 2):046104. PubMed ID: 11308909
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Anomalous diffusion as modeled by a nonstationary extension of Brownian motion.
    Cushman JH; O'Malley D; Park M
    Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Mar; 79(3 Pt 1):032101. PubMed ID: 19391995
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Anomalous diffusion due to hindering by mobile obstacles undergoing Brownian motion or Orstein-Ulhenbeck processes.
    Berry H; Chaté H
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Feb; 89(2):022708. PubMed ID: 25353510
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Self-similar Gaussian processes for modeling anomalous diffusion.
    Lim SC; Muniandy SV
    Phys Rev E Stat Nonlin Soft Matter Phys; 2002 Aug; 66(2 Pt 1):021114. PubMed ID: 12241157
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Brain serotonergic fibers suggest anomalous diffusion-based dropout in artificial neural networks.
    Lee C; Zhang Z; Janušonis S
    Front Neurosci; 2022; 16():949934. PubMed ID: 36267232
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.