These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
3. Finite-m scaling analysis of Berezinskii-Kosterlitz-Thouless phase transitions and entanglement spectrum for the six-state clock model. Ueda H; Okunishi K; Harada K; Krčmár R; Gendiar A; Yunoki S; Nishino T Phys Rev E; 2020 Jun; 101(6-1):062111. PubMed ID: 32688529 [TBL] [Abstract][Full Text] [Related]
4. Phase diagram of a truncated tetrahedral model. Krcmar R; Gendiar A; Nishino T Phys Rev E; 2016 Aug; 94(2-1):022134. PubMed ID: 27627273 [TBL] [Abstract][Full Text] [Related]
5. Corner transfer matrix renormalization group approach in the zoo of Archimedean lattices. Lukin IV; Sotnikov AG Phys Rev E; 2024 Apr; 109(4-2):045305. PubMed ID: 38755853 [TBL] [Abstract][Full Text] [Related]
6. Calculation of critical exponents on fractal lattice Ising model by higher-order tensor renormalization group method. Genzor J Phys Rev E; 2023 Mar; 107(3-1):034131. PubMed ID: 37073007 [TBL] [Abstract][Full Text] [Related]
7. Critical line of the triangular Ising antiferromagnet in a field from a C_{3}-symmetric corner transfer matrix algorithm. Nyckees S; Rufino A; Mila F; Colbois J Phys Rev E; 2023 Dec; 108(6-1):064132. PubMed ID: 38243525 [TBL] [Abstract][Full Text] [Related]
8. Original electric-vertex formulation of the symmetric eight-vertex model on the square lattice is fully nonuniversal. Krčmár R; Šamaj L Phys Rev E; 2018 Jan; 97(1-1):012108. PubMed ID: 29448318 [TBL] [Abstract][Full Text] [Related]
9. Plaquette ordered phase and quantum phase diagram in the spin-1/2 J(1)-J(2) square Heisenberg model. Gong SS; Zhu W; Sheng DN; Motrunich OI; Fisher MP Phys Rev Lett; 2014 Jul; 113(2):027201. PubMed ID: 25062223 [TBL] [Abstract][Full Text] [Related]
10. Phase transition of clock models on a hyperbolic lattice studied by corner transfer matrix renormalization group method. Gendiar A; Krcmar R; Ueda K; Nishino T Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Apr; 77(4 Pt 1):041123. PubMed ID: 18517594 [TBL] [Abstract][Full Text] [Related]
11. Renormalization-group theory for cooling first-order phase transitions in Potts models. Liang N; Zhong F Phys Rev E; 2017 Mar; 95(3-1):032124. PubMed ID: 28415242 [TBL] [Abstract][Full Text] [Related]
12. Critical Exponents Can Be Different on the Two Sides of a Transition: A Generic Mechanism. Léonard F; Delamotte B Phys Rev Lett; 2015 Nov; 115(20):200601. PubMed ID: 26613426 [TBL] [Abstract][Full Text] [Related]
13. Determination of the dynamic and static critical exponents of the two-dimensional three-state Potts model using linearly varying temperature. Fan S; Zhong F Phys Rev E Stat Nonlin Soft Matter Phys; 2007 Oct; 76(4 Pt 1):041141. PubMed ID: 17994970 [TBL] [Abstract][Full Text] [Related]
14. Critical properties of a two-dimensional Ising magnet with quasiperiodic interactions. Alves GA; Vasconcelos MS; Alves TF Phys Rev E; 2016 Apr; 93(4):042111. PubMed ID: 27176258 [TBL] [Abstract][Full Text] [Related]
15. Microcanonical finite-size scaling in second-order phase transitions with diverging specific heat. Fernandez LA; Gordillo-Guerrero A; Martin-Mayor V; Ruiz-Lorenzo JJ Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Nov; 80(5 Pt 1):051105. PubMed ID: 20364945 [TBL] [Abstract][Full Text] [Related]
16. Finite-size scaling analysis on the phase transition of a ferromagnetic polymer chain model. Luo MB J Chem Phys; 2006 Jan; 124(3):034903. PubMed ID: 16438610 [TBL] [Abstract][Full Text] [Related]
17. Phase transition in the two-dimensional dipolar planar rotator model. Mól LA; Costa BV J Phys Condens Matter; 2010 Feb; 22(4):046005. PubMed ID: 21386329 [TBL] [Abstract][Full Text] [Related]
18. Full nonuniversality of the symmetric 16-vertex model on the square lattice. Pospíšilová E; Krčmár R; Gendiar A; Šamaj L Phys Rev E; 2020 Jul; 102(1-1):012125. PubMed ID: 32795072 [TBL] [Abstract][Full Text] [Related]
19. Tensor network renormalization study on the crossover in classical Heisenberg and RP^{2} models in two dimensions. Ueda A; Oshikawa M Phys Rev E; 2022 Jul; 106(1-1):014104. PubMed ID: 35974598 [TBL] [Abstract][Full Text] [Related]
20. Percolation model with continuously varying exponents. Andrade RF; Herrmann HJ Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Oct; 88(4):042122. PubMed ID: 24229131 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]