These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 33076005)

  • 1. Smoothed particle hydrodynamics modeling of fuel drop impact on a heated surface at atmospheric and elevated pressures.
    Yang X; Kong SC
    Phys Rev E; 2020 Sep; 102(3-1):033313. PubMed ID: 33076005
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Numerical study on the Leidenfrost behavior of a droplet stream impinging on a heated wall.
    Subedi KK; Kong SC
    Phys Rev E; 2022 Jul; 106(1-2):015106. PubMed ID: 35974530
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Impact of a suspension drop onto a hot substrate: diminution of splash and prevention of film boiling.
    Gajevic Joksimovic M; Schmidt JB; Roisman IV; Tropea C; Hussong J
    Soft Matter; 2023 Feb; 19(7):1440-1453. PubMed ID: 36723248
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Experimental Study of Diesel-Fuel Droplet Impact on a Similarly Sized Polished Spherical Heated Solid Particle.
    Jadidbonab H; Mitroglou N; Karathanassis I; Gavaises M
    Langmuir; 2018 Jan; 34(1):36-49. PubMed ID: 29172533
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Smoothed particle hydrodynamics method for evaporating multiphase flows.
    Yang X; Kong SC
    Phys Rev E; 2017 Sep; 96(3-1):033309. PubMed ID: 29346906
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Simulation of drop movement over an inclined surface using smoothed particle hydrodynamics.
    Das AK; Das PK
    Langmuir; 2009 Oct; 25(19):11459-66. PubMed ID: 19719159
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Modeling of surface tension and contact angles with smoothed particle hydrodynamics.
    Tartakovsky A; Meakin P
    Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Aug; 72(2 Pt 2):026301. PubMed ID: 16196705
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Smoothed particle hydrodynamics simulations of evaporation and explosive boiling of liquid drops in microgravity.
    Sigalotti LD; Troconis J; Sira E; Peña-Polo F; Klapp J
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Jul; 92(1):013021. PubMed ID: 26274283
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Explosive bouncing on heated silicon surfaces under low ambient pressure.
    Yu X; Hu R; Zhang X; Xie B; Luo X
    Soft Matter; 2019 May; 15(21):4320-4325. PubMed ID: 31070662
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Drop Impact on Heated Nanostructures.
    Liu L; Cai G; Tsai PA
    Langmuir; 2020 Sep; 36(34):10051-10060. PubMed ID: 32794773
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Surface-Heating Algorithm for Water at Nanoscale.
    Y D S; Maroo SC
    J Phys Chem Lett; 2015 Sep; 6(18):3765-9. PubMed ID: 26722754
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Numerical Simulation and Experimental Study of the Drop Impact for a Multiphase System Formed by Two Immiscible Fluids.
    Sochan A; Lamorski K; Bieganowski A
    Sensors (Basel); 2022 Apr; 22(9):. PubMed ID: 35590816
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Modelling pollutant emissions in diesel engines, influence of biofuel on pollutant formation.
    Petranović Z; Bešenić T; Vujanović M; Duić N
    J Environ Manage; 2017 Dec; 203(Pt 3):1038-1046. PubMed ID: 28318826
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of ambient pressure on Leidenfrost temperature.
    Orejon D; Sefiane K; Takata Y
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Nov; 90(5-1):053012. PubMed ID: 25493886
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Diffuse-interface modeling of liquid-vapor coexistence in equilibrium drops using smoothed particle hydrodynamics.
    Sigalotti LD; Troconis J; Sira E; Peña-Polo F; Klapp J
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Jul; 90(1):013021. PubMed ID: 25122383
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Contact Line Instability Caused by Air Rim Formation under Nonsplashing Droplets.
    Pack M; Kaneelil P; Kim H; Sun Y
    Langmuir; 2018 May; 34(17):4962-4969. PubMed ID: 29620373
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Evaporation of a 1-Butanol Gel Fuel Droplet under Elevated Pressure Conditions.
    Nam S; Kim H
    ACS Omega; 2022 Mar; 7(10):8623-8632. PubMed ID: 35309420
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Novel method for the measurement of liquid film thickness during fuel spray impingement on surfaces.
    Henkel S; Beyrau F; Hardalupas Y; Taylor AM
    Opt Express; 2016 Feb; 24(3):2542-61. PubMed ID: 26906828
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Combustion in the future: The importance of chemistry.
    Kohse-Höinghaus K
    Proc Combust Inst; 2020 Sep; ():. PubMed ID: 33013234
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Improvement of ternary fuel combustion with various injection pressure strategies in a toroidal re-entrant combustion chamber.
    Venu H; Dinesh Babu M
    Environ Sci Pollut Res Int; 2018 Nov; 25(32):32024-32043. PubMed ID: 30218328
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.