These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

151 related articles for article (PubMed ID: 33076015)

  • 1. Classification of particle trajectories in living cells: Machine learning versus statistical testing hypothesis for fractional anomalous diffusion.
    Janczura J; Kowalek P; Loch-Olszewska H; Szwabiński J; Weron A
    Phys Rev E; 2020 Sep; 102(3-1):032402. PubMed ID: 33076015
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Impact of Feature Choice on Machine Learning Classification of Fractional Anomalous Diffusion.
    Loch-Olszewska H; Szwabiński J
    Entropy (Basel); 2020 Dec; 22(12):. PubMed ID: 33352694
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Single-Particle Diffusion Characterization by Deep Learning.
    Granik N; Weiss LE; Nehme E; Levin M; Chein M; Perlson E; Roichman Y; Shechtman Y
    Biophys J; 2019 Jul; 117(2):185-192. PubMed ID: 31280841
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Statistical analysis of particle trajectories in living cells.
    Briane V; Kervrann C; Vimond M
    Phys Rev E; 2018 Jun; 97(6-1):062121. PubMed ID: 30011544
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Statistical testing approach for fractional anomalous diffusion classification.
    Weron A; Janczura J; Boryczka E; Sungkaworn T; Calebiro D
    Phys Rev E; 2019 Apr; 99(4-1):042149. PubMed ID: 31108610
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Classification of diffusion modes in single-particle tracking data: Feature-based versus deep-learning approach.
    Kowalek P; Loch-Olszewska H; Szwabiński J
    Phys Rev E; 2019 Sep; 100(3-1):032410. PubMed ID: 31640019
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Classification-based motion analysis of single-molecule trajectories using DiffusionLab.
    Maris JJE; Rabouw FT; Weckhuysen BM; Meirer F
    Sci Rep; 2022 Jun; 12(1):9595. PubMed ID: 35689015
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Single-particle diffusional fingerprinting: A machine-learning framework for quantitative analysis of heterogeneous diffusion.
    Pinholt HD; Bohr SS; Iversen JF; Boomsma W; Hatzakis NS
    Proc Natl Acad Sci U S A; 2021 Aug; 118(31):. PubMed ID: 34321355
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Automatic detection of diffusion modes within biological membranes using back-propagation neural network.
    Dosset P; Rassam P; Fernandez L; Espenel C; Rubinstein E; Margeat E; Milhiet PE
    BMC Bioinformatics; 2016 May; 17(1):197. PubMed ID: 27141816
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Machine learning classification of trajectories from molecular dynamics simulations of chromosome segregation.
    Geisel D; Lenz P
    PLoS One; 2022; 17(1):e0262177. PubMed ID: 35061790
    [TBL] [Abstract][Full Text] [Related]  

  • 11. SMTracker: a tool for quantitative analysis, exploration and visualization of single-molecule tracking data reveals highly dynamic binding of B. subtilis global repressor AbrB throughout the genome.
    Rösch TC; Oviedo-Bocanegra LM; Fritz G; Graumann PL
    Sci Rep; 2018 Oct; 8(1):15747. PubMed ID: 30356068
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Analysis and refinement of 2D single-particle tracking experiments.
    Kerkhoff Y; Block S
    Biointerphases; 2020 Mar; 15(2):021201. PubMed ID: 32138519
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The evolution of boosting algorithms. From machine learning to statistical modelling.
    Mayr A; Binder H; Gefeller O; Schmid M
    Methods Inf Med; 2014; 53(6):419-27. PubMed ID: 25112367
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Revealing nonergodic dynamics in living cells from a single particle trajectory.
    Lanoiselée Y; Grebenkov DS
    Phys Rev E; 2016 May; 93(5):052146. PubMed ID: 27300868
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Quantitative Analysis of Single Quantum Dot Trajectories.
    Kovtun O; Thal LB; Josephs T; Rosenthal SJ
    Methods Mol Biol; 2020; 2135():109-123. PubMed ID: 32246331
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Identifying transport behavior of single-molecule trajectories.
    Regner BM; Tartakovsky DM; Sejnowski TJ
    Biophys J; 2014 Nov; 107(10):2345-51. PubMed ID: 25418303
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A deep learning-based approach to model anomalous diffusion of membrane proteins: the case of the nicotinic acetylcholine receptor.
    Maizón HB; Barrantes FJ
    Brief Bioinform; 2022 Jan; 23(1):. PubMed ID: 34695840
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Gramian angular fields for leveraging pretrained computer vision models with anomalous diffusion trajectories.
    Garibo-I-Orts Ò; Firbas N; Sebastiá L; Conejero JA
    Phys Rev E; 2023 Mar; 107(3-1):034138. PubMed ID: 37072993
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cholesterol-Dependent Dynamics of the Serotonin
    Shrivastava S; Sarkar P; Preira P; Salomé L; Chattopadhyay A
    J Phys Chem B; 2022 Sep; 126(35):6682-6690. PubMed ID: 35973070
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Bayesian deep learning for error estimation in the analysis of anomalous diffusion.
    Seckler H; Metzler R
    Nat Commun; 2022 Nov; 13(1):6717. PubMed ID: 36344559
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.