These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

184 related articles for article (PubMed ID: 33076027)

  • 1. Jamming and percolation of linear k-mers on honeycomb lattices.
    Iglesias Panuska GA; Centres PM; Ramirez-Pastor AJ
    Phys Rev E; 2020 Sep; 102(3-1):032123. PubMed ID: 33076027
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Irreversible bilayer adsorption of straight semirigid rods on two-dimensional square lattices: Jamming and percolation properties.
    De La Cruz Félix N; Centres PM; Ramirez-Pastor AJ
    Phys Rev E; 2020 Jul; 102(1-1):012153. PubMed ID: 32795003
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Standard and inverse site percolation of straight rigid rods on triangular lattices: Isotropic and perfectly oriented deposition and removal.
    Ramirez LS; Pasinetti PM; Lebrecht W; Ramirez-Pastor AJ
    Phys Rev E; 2021 Jul; 104(1-1):014101. PubMed ID: 34412197
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Jamming and percolation of k^{3}-mers on simple cubic lattices.
    Buchini Labayen AC; Centres PM; Pasinetti PM; Ramirez-Pastor AJ
    Phys Rev E; 2019 Aug; 100(2-1):022136. PubMed ID: 31574619
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Standard and inverse bond percolation of straight rigid rods on square lattices.
    Ramirez LS; Centres PM; Ramirez-Pastor AJ
    Phys Rev E; 2018 Apr; 97(4-1):042113. PubMed ID: 29758718
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Jamming and percolation for deposition of k^{2}-mers on square lattices: A Monte Carlo simulation study.
    Ramirez-Pastor AJ; Centres PM; Vogel EE; Valdés JF
    Phys Rev E; 2019 Apr; 99(4-1):042131. PubMed ID: 31108638
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Standard and inverse site percolation of triangular tiles on triangular lattices: Isotropic and perfectly oriented deposition and removal.
    Feliz NMC; Pimentel FML; Félix NC; Ramirez-Pastor AJ
    Phys Rev E; 2024 Mar; 109(3-1):034107. PubMed ID: 38632741
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Inverse percolation by removing straight semirigid rods from bilayer square lattices.
    Pimentel FML; Félix NC; Ramirez LS; Ramirez-Pastor AJ
    Phys Rev E; 2023 Jun; 107(6-1):064128. PubMed ID: 37464673
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Percolation phase transition by removal of k^{2}-mers from fully occupied lattices.
    Ramirez LS; Centres PM; Ramirez-Pastor AJ
    Phys Rev E; 2019 Sep; 100(3-1):032105. PubMed ID: 31640014
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Percolation of aligned rigid rods on two-dimensional triangular lattices.
    Longone P; Centres PM; Ramirez-Pastor AJ
    Phys Rev E; 2019 Nov; 100(5-1):052104. PubMed ID: 31870027
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Random sequential adsorption of self-avoiding chains on two-dimensional lattices.
    Ramirez LS; Pasinetti PM; Ramirez-Pastor AJ
    Phys Rev E; 2023 Jun; 107(6-1):064106. PubMed ID: 37464601
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Irreversible multilayer adsorption of semirigid k-mers deposited on one-dimensional lattices.
    De La Cruz Félix N; Centres PM; Ramirez-Pastor AJ; Vogel EE; Valdés JF
    Phys Rev E; 2020 Jul; 102(1-1):012106. PubMed ID: 32795054
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Percolation and jamming of linear k-mers on a square lattice with defects: Effect of anisotropy.
    Tarasevich YY; Burmistrov AS; Shinyaeva TS; Laptev VV; Vygornitskii NV; Lebovka NI
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Dec; 92(6):062142. PubMed ID: 26764667
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Jamming and percolation in generalized models of random sequential adsorption of linear k-mers on a square lattice.
    Lebovka NI; Tarasevich YY; Dubinin DO; Laptev VV; Vygornitskii NV
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Dec; 92(6):062116. PubMed ID: 26764641
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Percolation of linear k-mers on a square lattice: from isotropic through partially ordered to completely aligned states.
    Tarasevich YY; Lebovka NI; Laptev VV
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Dec; 86(6 Pt 1):061116. PubMed ID: 23367902
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Impact of defects on percolation in random sequential adsorption of linear k-mers on square lattices.
    Tarasevich YY; Laptev VV; Vygornitskii NV; Lebovka NI
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Jan; 91(1):012109. PubMed ID: 25679572
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Breaking universality in random sequential adsorption on a square lattice with long-range correlated defects.
    Kundu S; Mandal D
    Phys Rev E; 2021 Apr; 103(4-1):042134. PubMed ID: 34006012
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Percolation in random sequential adsorption of extended objects on a triangular lattice.
    Budinski-Petković Lj; Lončarević I; Petković M; Jakšić ZM; Vrhovac SB
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Jun; 85(6 Pt 1):061117. PubMed ID: 23005061
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Percolation of aligned rigid rods on two-dimensional square lattices.
    Longone P; Centres PM; Ramirez-Pastor AJ
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Jan; 85(1 Pt 1):011108. PubMed ID: 22400513
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Random adsorption process of linear k-mers on square lattices under the Achlioptas process.
    Chen F; Fang P; Li L; You WL; Liu M
    Phys Rev E; 2022 Jun; 105(6-1):064116. PubMed ID: 35854510
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.