These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

45 related articles for article (PubMed ID: 33076160)

  • 1. Magnetic bead-based electrochemical and colorimetric assays of circulating tumor cells with boronic acid derivatives as the recognition elements and signal probes.
    Xia N; Wu D; Yu H; Sun W; Yi X; Liu L
    Talanta; 2021 Jan; 221():121640. PubMed ID: 33076160
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Colorimetric detection of circulating tumor cells in breast cancer based on ladder-branch hybridization chain reaction and DFs/AuNCs nanozyme.
    Ren D; Wei H; Li N; Fu W; Huang Z; Yang L; Mu S
    Talanta; 2024 Jul; 274():125921. PubMed ID: 38552481
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Engineered Leukocyte Biomimetic Colorimetric Sensor Enables High-Efficient Detection of Tumor Cells Based on Bioorthogonal Chemistry.
    Li M; Jia L; Zhu A; Li J; Li J; Liu X; Xie X
    ACS Appl Mater Interfaces; 2024 Jul; 16(28):36106-36116. PubMed ID: 38955781
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Colorimetric Sugar Sensing Using Boronic Acid-Substituted Azobenzenes.
    Egawa Y; Miki R; Seki T
    Materials (Basel); 2014 Feb; 7(2):1201-1220. PubMed ID: 28788510
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Multi-layer assembly of cellulose nanofibrils in a microfluidic device for the selective capture and release of viable tumor cells from whole blood.
    Kumar T; Soares RRG; Ali Dholey L; Ramachandraiah H; Aval NA; Aljadi Z; Pettersson T; Russom A
    Nanoscale; 2020 Nov; 12(42):21788-21797. PubMed ID: 33103175
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A novel microfluidic device integrating focus-separation speed reduction design and trap arrays for high-throughput capture of circulating tumor cells.
    Lu C; Xu J; Han J; Li X; Xue N; Li J; Wu W; Sun X; Wang Y; Ouyang Q; Yang G; Luo C
    Lab Chip; 2020 Nov; 20(22):4094-4105. PubMed ID: 33089845
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Evaluation of a new magnetic bead as an integrated platform for systematic CTC recognition, capture and clinical analysis.
    Lu X; Tan S; Wu M; Ju H; Liang X; Li P
    Colloids Surf B Biointerfaces; 2021 Mar; 199():111542. PubMed ID: 33373845
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Recent Trends and Innovations in Bead-Based Biosensors for Cancer Detection.
    Cheng HP; Yang TH; Wang JC; Chuang HS
    Sensors (Basel); 2024 May; 24(9):. PubMed ID: 38733011
    [TBL] [Abstract][Full Text] [Related]  

  • 9. SERS sensing for cancer biomarker: Approaches and directions.
    Vázquez-Iglesias L; Stanfoca Casagrande GM; García-Lojo D; Ferro Leal L; Ngo TA; Pérez-Juste J; Reis RM; Kant K; Pastoriza-Santos I
    Bioact Mater; 2024 Apr; 34():248-268. PubMed ID: 38260819
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ag@AuNP-Functionalized Capillary-Based SERS Sensing Platform for Interference-Free Detection of Glucose in Urine Using SERS Tags with Built-In Nitrile Signal.
    Si Y; Wang H; Yan Y; Li B; Ni Z; Shi H
    Molecules; 2023 Dec; 28(24):. PubMed ID: 38138429
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Overview on the Development of Alkaline-Phosphatase-Linked Optical Immunoassays.
    Liu L; Chang Y; Lou J; Zhang S; Yi X
    Molecules; 2023 Sep; 28(18):. PubMed ID: 37764341
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Progress in Electrochemical Immunosensors with Alkaline Phosphatase as the Signal Label.
    Chen C; La M; Yi X; Huang M; Xia N; Zhou Y
    Biosensors (Basel); 2023 Aug; 13(9):. PubMed ID: 37754089
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Biosensors with Boronic Acid-Based Materials as the Recognition Elements and Signal Labels.
    Liu L; Ma X; Chang Y; Guo H; Wang W
    Biosensors (Basel); 2023 Aug; 13(8):. PubMed ID: 37622871
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Streptavidin-Conjugated DNA for the Boronate Affinity-Based Detection of Poly(ADP-Ribose) Polymerase-1 with Improved Sensitivity.
    Gao F; Liu G; Qiao Y; Dong X; Liu L
    Biosensors (Basel); 2023 Jul; 13(7):. PubMed ID: 37504121
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ultrasensitive electrochemical biosensor for detection of circulating tumor cells based on a highly efficient enzymatic cascade reaction.
    Dong M; Gao Z; Zhang Y; Cai J; Li J; Xu P; Jiang H; Gu J; Wang J
    RSC Adv; 2023 Apr; 13(19):12966-12972. PubMed ID: 37124001
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Aptamer-based rapid diagnosis for point-of-care application.
    Futane A; Narayanamurthy V; Jadhav P; Srinivasan A
    Microfluid Nanofluidics; 2023; 27(2):15. PubMed ID: 36688097
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Facile, rapid and efficient isolation of circulating tumor cells using aptamer-targeted magnetic nanoparticles integrated with a microfluidic device.
    Kajani AA; Rafiee L; Samandari M; Mehrgardi MA; Zarrin B; Javanmard SH
    RSC Adv; 2022 Nov; 12(51):32834-32843. PubMed ID: 36425208
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Overview on the Design of Magnetically Assisted Electrochemical Biosensors.
    Chang Y; Wang Y; Zhang J; Xing Y; Li G; Deng D; Liu L
    Biosensors (Basel); 2022 Nov; 12(11):. PubMed ID: 36354462
    [TBL] [Abstract][Full Text] [Related]  

  • 19. In Situ Assembly of Nanomaterials and Molecules for the Signal Enhancement of Electrochemical Biosensors.
    Chang Y; Xia N; Huang Y; Sun Z; Liu L
    Nanomaterials (Basel); 2021 Dec; 11(12):. PubMed ID: 34947656
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Electrochemical Aptasensors: Current Status and Future Perspectives.
    Abd-Ellatief R; Abd-Ellatief MR
    Diagnostics (Basel); 2021 Jan; 11(1):. PubMed ID: 33440751
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 3.