These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

244 related articles for article (PubMed ID: 33076308)

  • 1. Plasmonic Sensors for Monitoring Biological and Chemical Threat Agents.
    Saylan Y; Akgönüllü S; Denizli A
    Biosensors (Basel); 2020 Oct; 10(10):. PubMed ID: 33076308
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Functionalized gold nanoparticle supported sensory mechanisms applied in detection of chemical and biological threat agents: a review.
    Upadhyayula VK
    Anal Chim Acta; 2012 Feb; 715():1-18. PubMed ID: 22244163
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Nanomaterials enhanced surface plasmon resonance for biological and chemical sensing applications.
    Zeng S; Baillargeat D; Ho HP; Yong KT
    Chem Soc Rev; 2014 May; 43(10):3426-52. PubMed ID: 24549396
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Stochastic nanopore sensors for the detection of terrorist agents: current status and challenges.
    Liu A; Zhao Q; Guan X
    Anal Chim Acta; 2010 Aug; 675(2):106-15. PubMed ID: 20800721
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Nano/micromotors for security/defense applications. A review.
    Singh VV; Wang J
    Nanoscale; 2015 Dec; 7(46):19377-89. PubMed ID: 26554557
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Computational Sensing Using Low-Cost and Mobile Plasmonic Readers Designed by Machine Learning.
    Ballard ZS; Shir D; Bhardwaj A; Bazargan S; Sathianathan S; Ozcan A
    ACS Nano; 2017 Feb; 11(2):2266-2274. PubMed ID: 28128933
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Chemical and biological threat-agent detection using electrophoresis-based lab-on-a-chip devices.
    Borowsky J; Collins GE
    Analyst; 2007 Oct; 132(10):958-62. PubMed ID: 17893797
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Explosive and chemical threat detection by surface-enhanced Raman scattering: a review.
    Hakonen A; Andersson PO; Stenbæk Schmidt M; Rindzevicius T; Käll M
    Anal Chim Acta; 2015 Sep; 893():1-13. PubMed ID: 26398417
    [TBL] [Abstract][Full Text] [Related]  

  • 9. DNA-Functionalized Plasmonic Nanomaterials for Optical Biosensing.
    Tian Y; Zhang L; Wang L
    Biotechnol J; 2020 Jan; 15(1):e1800741. PubMed ID: 31464360
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Plasmonic colorimetric sensors based on etching and growth of noble metal nanoparticles: Strategies and applications.
    Zhang Z; Wang H; Chen Z; Wang X; Choo J; Chen L
    Biosens Bioelectron; 2018 Aug; 114():52-65. PubMed ID: 29778002
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Plasmonic Assemblies for Real-Time Single-Molecule Biosensing.
    Armstrong RE; Horáček M; Zijlstra P
    Small; 2020 Dec; 16(52):e2003934. PubMed ID: 33258287
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Localized surface plasmon resonance based biosensing.
    Csáki A; Stranik O; Fritzsche W
    Expert Rev Mol Diagn; 2018 Mar; 18(3):279-296. PubMed ID: 29431525
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Plasmonic Metamaterials for Nanochemistry and Sensing.
    Wang P; Nasir ME; Krasavin AV; Dickson W; Jiang Y; Zayats AV
    Acc Chem Res; 2019 Nov; 52(11):3018-3028. PubMed ID: 31680511
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Biosensor technology: recent advances in threat agent detection and medicine.
    Kirsch J; Siltanen C; Zhou Q; Revzin A; Simonian A
    Chem Soc Rev; 2013 Nov; 42(22):8733-68. PubMed ID: 23852443
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Graphene-based nanocomposites for sensitivity enhancement of surface plasmon resonance sensor for biological and chemical sensing: A review.
    Patil PO; Pandey GR; Patil AG; Borse VB; Deshmukh PK; Patil DR; Tade RS; Nangare SN; Khan ZG; Patil AM; More MP; Veerapandian M; Bari SB
    Biosens Bioelectron; 2019 Aug; 139():111324. PubMed ID: 31121435
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Wearable Ring-Based Sensing Platform for Detecting Chemical Threats.
    Sempionatto JR; Mishra RK; Martín A; Tang G; Nakagawa T; Lu X; Campbell AS; Lyu KM; Wang J
    ACS Sens; 2017 Oct; 2(10):1531-1538. PubMed ID: 29019246
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Color-sensitive and spectrometer-free plasmonic sensor for biosensing applications.
    Kim S; Lee Y; Kim JY; Yang JH; Kwon HJ; Hwang JY; Moon C; Jang JE
    Biosens Bioelectron; 2019 Feb; 126():743-750. PubMed ID: 30553104
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A Mass-Producible and Versatile Sensing System: Localized Surface Plasmon Resonance Excited by Individual Waveguide Modes.
    Ding Z; Stubbs JM; McRae D; Blacquiere JM; Lagugné-Labarthet F; Mittler S
    ACS Sens; 2018 Feb; 3(2):334-341. PubMed ID: 29318873
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Rapid response behavior, at room temperature, of a nanofiber-structured TiO2 sensor to selected simulant chemical-warfare agents.
    Ma X; Zhu T; Xu H; Li G; Zheng J; Liu A; Zhang J; Du H
    Anal Bioanal Chem; 2008 Feb; 390(4):1133-7. PubMed ID: 18094961
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Universal scaling of the figure of merit of plasmonic sensors.
    Offermans P; Schaafsma MC; Rodriguez SR; Zhang Y; Crego-Calama M; Brongersma SH; Gómez Rivas J
    ACS Nano; 2011 Jun; 5(6):5151-7. PubMed ID: 21574624
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.