These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

92 related articles for article (PubMed ID: 3307631)

  • 1. Possible processing of mitochondria-bindable hexokinase to the nonbindable form by a lysosomal protease in rat liver.
    Yokoyama-Sato K; Akimoto H; Imai N; Ishibashi S
    Arch Biochem Biophys; 1987 Aug; 257(1):56-62. PubMed ID: 3307631
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Difference in hydrophobicity between mitochondria-bindable and non-bindable forms of hexokinase purified from rat brain.
    Kurokawa M; Yokoyama K; Kaneko M; Ishibashi S
    Biochem Biophys Res Commun; 1983 Sep; 115(3):1101-7. PubMed ID: 6626221
    [TBL] [Abstract][Full Text] [Related]  

  • 3. An intact hydrophobic N-terminal sequence is critical for binding of rat brain hexokinase to mitochondria.
    Polakis PG; Wilson JE
    Arch Biochem Biophys; 1985 Jan; 236(1):328-37. PubMed ID: 2578271
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Possible involvement of cathepsin L in processing of rat liver hexokinase to eliminate mitochondria-binding ability.
    Okazaki H; Tani C; Ando M; Ishii K; Ishibashi S; Nishimura Y; Kato K
    J Biochem; 1992 Sep; 112(3):409-13. PubMed ID: 1429531
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Purification and characterization of a bindable form of mitochondrial bound hexokinase from the highly glycolytic AS-30D rat hepatoma cell line.
    Nakashima RA; Paggi MG; Scott LJ; Pedersen PL
    Cancer Res; 1988 Feb; 48(4):913-9. PubMed ID: 3338084
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Purification of nonbindable and membrane-bindable mitochondrial hexokinase from rat brain.
    Felgner PL; Wilson JE
    Biochem Biophys Res Commun; 1976 Jan; 68(2):592-7. PubMed ID: 1252247
    [No Abstract]   [Full Text] [Related]  

  • 7. Rabbit brain hexokinase: evidence for the presence of two distinct molecular forms.
    Ceccaroli P; Fiorani M; Buffalini M; Piccoli G; Biagiarelli B; Stocchi V
    Biochem Mol Biol Int; 1995 Nov; 37(4):665-74. PubMed ID: 8589639
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cathepsin L. A new proteinase from rat-liver lysosomes.
    Kirschke H; Langner J; Wiederanders B; Ansorge S; Bohley P
    Eur J Biochem; 1977 Apr; 74(2):293-301. PubMed ID: 15835
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Porin proteins in mitochondria from rat pancreatic islet cells and white adipocytes: identification and regulation of hexokinase binding by the sulfonylurea glimepiride.
    Müller G; Korndörfer A; Kornak U; Malaisse WJ
    Arch Biochem Biophys; 1994 Jan; 308(1):8-23. PubMed ID: 8311478
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A new protease in hog thyroid lysosomes. II. A partial purification and characterization of a leupeptin-sensitive protease.
    Nakagawa H; Endo Y; Ohtaki S
    Acta Endocrinol (Copenh); 1981 Nov; 98(3):390-5. PubMed ID: 7027712
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Evidence that aspartic proteinase is involved in the proteolytic processing event of procathepsin L in lysosomes.
    Nishimura Y; Kawabata T; Furuno K; Kato K
    Arch Biochem Biophys; 1989 Jun; 271(2):400-6. PubMed ID: 2658811
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effects of Triton WR-1339 on lipoprotein lipolytic activity and lipid content of rat liver lysosomes.
    Hayashi H; Niinobe S; Matsumoto Y; Suga T
    J Biochem; 1981 Feb; 89(2):573-9. PubMed ID: 7240128
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Intracellular transport and processing of lysosomal cathepsin H.
    Nishimura Y; Kato K
    Biochem Biophys Res Commun; 1987 Oct; 148(1):329-34. PubMed ID: 3675581
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The effect of triton WR-1339 on the subcellular distribution of trypan blue and 125 I-labelled albumin in rat liver.
    Davies M
    Biochem J; 1973 Sep; 136(1):57-65. PubMed ID: 4772628
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Transport of the precursor for sulfite oxidase into intermembrane space of liver mitochondria: characterization of import and processing activities.
    Ono H; Ito A
    J Biochem; 1984 Feb; 95(2):345-52. PubMed ID: 6715303
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mitochondrial boundary membrane contact sites in brain: points of hexokinase and creatine kinase location, and control of Ca2+ transport.
    Kottke M; Adam V; Riesinger I; Bremm G; Bosch W; Brdiczka D; Sandri G; Panfili E
    Biochim Biophys Acta; 1988 Aug; 935(1):87-102. PubMed ID: 2457393
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Increased activity of cyclic AMP phosphodiesterase from frozen-thawed rat liver. A role of lysosomal protease in enzyme activation.
    Sakai T; Makino H; Tanaka R
    Biochim Biophys Acta; 1978 Feb; 522(2):477-90. PubMed ID: 203322
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Proteolysis in mitochondrial preparations and in lysosomal preparations derived from rat liver.
    Dean B
    Arch Biochem Biophys; 1983 Nov; 227(1):154-63. PubMed ID: 6357096
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Glucose utilization by tumor cells: a post-translational modification of mitochondrial hexokinase may play a regulatory role.
    Paggi MG; Fanciulli M; Del Carlo C; Citro G; Bruno T; Floridi A
    Biochem Biophys Res Commun; 1991 Jul; 178(2):648-55. PubMed ID: 1713451
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Biosynthesis, processing, and lysosome targeting of acid phosphatase].
    Himeno M; Tanaka Y
    Nihon Rinsho; 1995 Dec; 53(12):2898-903. PubMed ID: 8577032
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.