BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

353 related articles for article (PubMed ID: 33076318)

  • 41. Vibrational and surface-enhanced vibrational spectra of 6-nitrochrysene.
    Carrasco-Flores EA; Clavijo RE; Campos-Vallette MM; Aroca RF
    Spectrochim Acta A Mol Biomol Spectrosc; 2005 Jan; 61(3):509-14. PubMed ID: 15582820
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Molecular structure, vibrational spectra, NMR and UV spectral analysis of sulfamethoxazole.
    Vijaya Chamundeeswari SP; James Jebaseelan Samuel E; Sundaraganesan N
    Spectrochim Acta A Mol Biomol Spectrosc; 2014 Jan; 118():1-10. PubMed ID: 24036090
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Vibrational Spectroscopy in Body Fluids Analysis.
    Bunaciu AA; Fleschin Ş; Hoang VD; Aboul-Enein HY
    Crit Rev Anal Chem; 2017 Jan; 47(1):67-75. PubMed ID: 27404559
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Biomedical vibrational spectroscopy.
    Krafft C; Bird B
    J Biophotonics; 2013 Jan; 6(1):5-6. PubMed ID: 23288708
    [No Abstract]   [Full Text] [Related]  

  • 45. FTIR and Raman spectra and SQM force field calculation for vibrational analysis of 2,3,4- and 2,3,6-tri-fluoro-anilines.
    Mukherjee V; Singh K; Singh NP; Yadav RA
    Spectrochim Acta A Mol Biomol Spectrosc; 2009 Jul; 73(1):44-53. PubMed ID: 19264537
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Vibrational spectroscopy and DFT calculations of the di-amino acid peptide L-aspartyl-L-glutamic acid in the zwitterionic state.
    Kausar N; Dines TJ; Chowdhry BZ; Alexander BD
    Phys Chem Chem Phys; 2009 Aug; 11(30):6389-400. PubMed ID: 19809670
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Vibrational spectroscopic methods for cytology and cellular research.
    Clemens G; Hands JR; Dorling KM; Baker MJ
    Analyst; 2014 Sep; 139(18):4411-44. PubMed ID: 25028699
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Novel CdCl2 and HgCl2 complexes with 3-monosubstituted and 3,3-disubstituted 1-furoylthioureas: IR and Raman spectra.
    Estévez-Hernández O; Otazo-Sánchez E; de Cisneros JL; Naranjo-Rodríguez I; Reguera E
    Spectrochim Acta A Mol Biomol Spectrosc; 2006 Jul; 64(4):961-71. PubMed ID: 16330247
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Quantum chemical determination of molecular geometries and interpretation of FTIR and Raman spectra for 2,4,5- and 3,4,5-tri-fluoro-benzonitriles.
    Mukherjee V; Singh K; Singh NP; Yadav RA
    Spectrochim Acta A Mol Biomol Spectrosc; 2008 Dec; 71(4):1571-80. PubMed ID: 18693066
    [TBL] [Abstract][Full Text] [Related]  

  • 50. FT-IR, FT-Raman, ab initio and DFT structural and vibrational frequency analysis of 6-aminopenicillanic acid.
    Swaminathan J; Ramalingam M; Sethuraman V; Sundaraganesan N; Sebastian S; Kurt M
    Spectrochim Acta A Mol Biomol Spectrosc; 2010 Jan; 75(1):183-90. PubMed ID: 19897407
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Vibrational and NMR spectroscopic study of aged flurazepam mono- and dihydrochloride salts for content identity.
    Neville GA; Beckstead HD; Black DB; Dawson BA; Shurvell HF
    J Pharm Sci; 1994 Sep; 83(9):1274-9. PubMed ID: 7830243
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Vibrational spectroscopy for molecular characterisation and diagnosis of benign, premalignant and malignant skin tumours.
    Eikje NS; Aizawa K; Ozaki Y
    Biotechnol Annu Rev; 2005; 11():191-225. PubMed ID: 16216778
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Identification of celluloses with Fourier-transform (FT) mid-infrared, FT-Raman and near-infrared spectrometry.
    Langkilde FW; Svantesson A
    J Pharm Biomed Anal; 1995 Apr; 13(4-5):409-14. PubMed ID: 9696549
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Spectroscopic investigations and structural confirmation studies on thiourea.
    Srinivasan K; Gunasekaran S; Krishnan S
    Spectrochim Acta A Mol Biomol Spectrosc; 2010 Mar; 75(3):1171-5. PubMed ID: 20083426
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Structural study of 2-(1-oxo-1 H-inden-3-yl)-2H-indene-1,3-dione by DFT calculations, NMR and IR spectroscopy.
    Riahi S; Ganjali MR; Moghaddam AB; Norouzi P; Hosseiny Davarani SS
    Spectrochim Acta A Mol Biomol Spectrosc; 2008 Jun; 70(1):94-8. PubMed ID: 17768082
    [TBL] [Abstract][Full Text] [Related]  

  • 56. An empirical evaluation of three vibrational spectroscopic methods for detection of aflatoxins in maize.
    Lee KM; Davis J; Herrman TJ; Murray SC; Deng Y
    Food Chem; 2015 Apr; 173():629-39. PubMed ID: 25466069
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Vibrational spectroscopy [FTIR and FTRaman] investigation, computed vibrational frequency analysis and IR intensity and Raman activity peak resemblance analysis on 4-chloro 2-methylaniline using HF and DFT [LSDA, B3LYP and B3PW91] calculations.
    Ramalingam S; Periandy S
    Spectrochim Acta A Mol Biomol Spectrosc; 2011 Mar; 78(3):1149-61. PubMed ID: 21237700
    [TBL] [Abstract][Full Text] [Related]  

  • 58. FT-IR, NIR-FT-Raman and gas phase infrared spectra of 3-aminoacetophenone by density functional theory and ab initio Hartree-Fock calculations.
    Subramanian MK; Anbarasan PM; Ilangovan V; Babu SM
    Spectrochim Acta A Mol Biomol Spectrosc; 2008 Nov; 71(1):59-67. PubMed ID: 18178129
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Triethylsilanol: molecular conformations and role of the hydrogen-bonding oligomerization in its vibrational spectra.
    Montejo M; Partal Ureña F; Márquez F; López González JJ
    J Phys Chem A; 2008 Feb; 112(7):1545-51. PubMed ID: 18229903
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Comparison of mid-infrared and Raman spectroscopy in the quantitative analysis of serum.
    Rohleder D; Kocherscheidt G; Gerber K; Kiefer W; Köhler W; Möcks J; Petrich W
    J Biomed Opt; 2005; 10(3):031108. PubMed ID: 16229633
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 18.