BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

185 related articles for article (PubMed ID: 33076374)

  • 1. Differential Expression of Maize and Teosinte microRNAs under Submergence, Drought, and Alternated Stress.
    Sepúlveda-García EB; Pulido-Barajas JF; Huerta-Heredia AA; Peña-Castro JM; Liu R; Barrera-Figueroa BE
    Plants (Basel); 2020 Oct; 9(10):. PubMed ID: 33076374
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Submergence-responsive MicroRNAs are potentially involved in the regulation of morphological and metabolic adaptations in maize root cells.
    Zhang Z; Wei L; Zou X; Tao Y; Liu Z; Zheng Y
    Ann Bot; 2008 Oct; 102(4):509-19. PubMed ID: 18669574
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Characteristics of microRNAs and Target Genes in Maize Root under Drought Stress.
    Tang Q; Lv H; Li Q; Zhang X; Li L; Xu J; Wu F; Wang Q; Feng X; Lu Y
    Int J Mol Sci; 2022 Apr; 23(9):. PubMed ID: 35563360
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Identification and Characterization of Novel Maize Mirnas Involved in Different Genetic Background.
    Sheng L; Chai W; Gong X; Zhou L; Cai R; Li X; Zhao Y; Jiang H; Cheng B
    Int J Biol Sci; 2015; 11(7):781-93. PubMed ID: 26078720
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cloning and expression analysis of hemoglobin genes from maize (Zea mays ssp. mays) and teosinte (Zea mays ssp. parviglumis).
    Aréchaga-Ocampo E; Saenz-Rivera J; Sarath G; Klucas RV; Arredondo-Peter R
    Biochim Biophys Acta; 2001 Nov; 1522(1):1-8. PubMed ID: 11718894
    [TBL] [Abstract][Full Text] [Related]  

  • 6. RNA-seq Analysis of Cold and Drought Responsive Transcriptomes of
    Lu X; Zhou X; Cao Y; Zhou M; McNeil D; Liang S; Yang C
    Front Plant Sci; 2017; 8():136. PubMed ID: 28223998
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Increased seminal root number associated with domestication improves nitrogen and phosphorus acquisition in maize seedlings.
    Perkins AC; Lynch JP
    Ann Bot; 2021 Sep; 128(4):453-468. PubMed ID: 34120166
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Spontaneous hybridization between maize and teosinte.
    Ellstrand NC; Garner LC; Hegde S; Guadagnuolo R; Blancas L
    J Hered; 2007; 98(2):183-7. PubMed ID: 17400586
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Combined small RNA and degradome sequencing reveals novel miRNAs and their targets in response to low nitrate availability in maize.
    Zhao Y; Xu Z; Mo Q; Zou C; Li W; Xu Y; Xie C
    Ann Bot; 2013 Aug; 112(3):633-42. PubMed ID: 23788746
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Transformation of Teosinte (
    Zobrist JD; Martin-Ortigosa S; Lee K; Azanu MK; Ji Q; Wang K
    Front Plant Sci; 2021; 12():773419. PubMed ID: 34956270
    [TBL] [Abstract][Full Text] [Related]  

  • 11. RNA-Seq identification of candidate defense genes by analyzing Mythimna separata feeding-damage induced systemic resistance in balsas teosinte.
    Yang L; Gao J; Zhang Y; Tian J; Sun Y; Wang C
    Pest Manag Sci; 2020 Jan; 76(1):333-342. PubMed ID: 31207043
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Identification of miRNA-eQTLs in maize mature leaf by GWAS.
    Chen SY; Su MH; Kremling KA; Lepak NK; Romay MC; Sun Q; Bradbury PJ; Buckler ES; Ku HM
    BMC Genomics; 2020 Oct; 21(1):689. PubMed ID: 33023467
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Inheritance of the morphological differences between maize and teosinte: comparison of results for two F2 populations.
    Doebley J; Stec A
    Genetics; 1993 Jun; 134(2):559-70. PubMed ID: 8325489
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Single-molecule long-read sequencing reveals extensive genomic and transcriptomic variation between maize and its wild relative teosinte (Zea mays ssp. parviglumis).
    Li Z; Han L; Luo Z; Li L
    Mol Ecol Resour; 2022 Jan; 22(1):272-282. PubMed ID: 34157795
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Identification of miRNAs and their target genes in developing maize ears by combined small RNA and degradome sequencing.
    Liu H; Qin C; Chen Z; Zuo T; Yang X; Zhou H; Xu M; Cao S; Shen Y; Lin H; He X; Zhang Y; Li L; Ding H; Lübberstedt T; Zhang Z; Pan G
    BMC Genomics; 2014 Jan; 15():25. PubMed ID: 24422852
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The miRNA-Mediated Post-Transcriptional Regulation of Maize in Response to High Temperature.
    Zhang M; An P; Li H; Wang X; Zhou J; Dong P; Zhao Y; Wang Q; Li C
    Int J Mol Sci; 2019 Apr; 20(7):. PubMed ID: 30970661
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Identification of drought-responsive and novel Populus trichocarpa microRNAs by high-throughput sequencing and their targets using degradome analysis.
    Shuai P; Liang D; Zhang Z; Yin W; Xia X
    BMC Genomics; 2013 Apr; 14():233. PubMed ID: 23570526
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Female gametophyte development and double fertilization in Balsas teosinte, Zea mays subsp. parviglumis (Poaceae).
    Wu CC; Diggle PK; Friedman WE
    Sex Plant Reprod; 2011 Sep; 24(3):219-29. PubMed ID: 21380710
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Ecogeography of teosinte.
    Sánchez González JJ; Ruiz Corral JA; García GM; Ojeda GR; Larios LC; Holland JB; Medrano RM; García Romero GE
    PLoS One; 2018; 13(2):e0192676. PubMed ID: 29451888
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Characterization of drought- and heat-responsive microRNAs in switchgrass.
    Hivrale V; Zheng Y; Puli COR; Jagadeeswaran G; Gowdu K; Kakani VG; Barakat A; Sunkar R
    Plant Sci; 2016 Jan; 242():214-223. PubMed ID: 26566839
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.