These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

247 related articles for article (PubMed ID: 33076412)

  • 1. Analytical and Experimental Study of Fatigue-Crack-Growth AE Signals in Thin Sheet Metals.
    Joseph R; Giurgiutiu V
    Sensors (Basel); 2020 Oct; 20(20):. PubMed ID: 33076412
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Multiphysics Simulation of Low-Amplitude Acoustic Wave Detection by Piezoelectric Wafer Active Sensors Validated by In-Situ AE-Fatigue Experiment.
    Bhuiyan MY; Giurgiutiu V
    Materials (Basel); 2017 Aug; 10(8):. PubMed ID: 28817081
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Characterization of piezoelectric wafer active sensor for acoustic emission sensing.
    Bhuiyan Y; Lin B; Giurgiutiu V
    Ultrasonics; 2019 Feb; 92():35-49. PubMed ID: 30218898
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Modeling and Analysis of Acoustic Emission Generated by Fatigue Cracking.
    Mu W; Gao Y; Wang Y; Liu G; Hu H
    Sensors (Basel); 2022 Feb; 22(3):. PubMed ID: 35161962
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Recent Advances in Piezoelectric Wafer Active Sensors for Structural Health Monitoring Applications.
    Mei H; Haider MF; Joseph R; Migot A; Giurgiutiu V
    Sensors (Basel); 2019 Jan; 19(2):. PubMed ID: 30669307
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Crack-Length Estimation for Structural Health Monitoring Using the High-Frequency Resonances Excited by the Energy Release during Fatigue-Crack Growth.
    Joseph R; Mei H; Migot A; Giurgiutiu V
    Sensors (Basel); 2021 Jun; 21(12):. PubMed ID: 34203019
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fatigue-Crack Detection and Monitoring through the Scattered-Wave Two-Dimensional Cross-Correlation Imaging Method Using Piezoelectric Transducers.
    Xiao W; Yu L; Joseph R; Giurgiutiu V
    Sensors (Basel); 2020 May; 20(11):. PubMed ID: 32471102
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Characterization of Fatigue Crack Growth Based on Acoustic Emission Multi-Parameter Analysis.
    Chai M; Lai C; Xu W; Duan Q; Zhang Z; Song Y
    Materials (Basel); 2022 Sep; 15(19):. PubMed ID: 36234007
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Transmission of Lamb waves across a partially closed crack: Numerical analysis and experiment.
    Matsushita M; Mori N; Biwa S
    Ultrasonics; 2019 Feb; 92():57-67. PubMed ID: 30245346
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Acoustic Emission Source Characterisation during Fatigue Crack Growth in Al 2024-T3 Specimens.
    Yao X; Vien BS; Davies C; Chiu WK
    Sensors (Basel); 2022 Nov; 22(22):. PubMed ID: 36433389
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Crack length directivity effects on guided-wave acoustic emission: Numerical investigation of radiation patterns.
    Dubuc B
    Ultrasonics; 2024 Feb; 137():107190. PubMed ID: 37918181
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Acoustic Emission and Artificial Intelligence Procedure for Crack Source Localization.
    Melchiorre J; Manuello Bertetto A; Rosso MM; Marano GC
    Sensors (Basel); 2023 Jan; 23(2):. PubMed ID: 36679490
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Characterization of Fatigue Damage in Hadfield Steel Using Acoustic Emission and Machine Learning-Based Methods.
    Shi S; Yao D; Wu G; Chen H; Zhang S
    Sensors (Basel); 2024 Jan; 24(1):. PubMed ID: 38203137
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Prediction of Fatigue Crack Growth in Gas Turbine Engine Blades Using Acoustic Emission.
    Zhang Z; Yang G; Hu K
    Sensors (Basel); 2018 Apr; 18(5):. PubMed ID: 29693556
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Research on a Lamb Wave and Particle Filter-Based On-Line Crack Propagation Prognosis Method.
    Chen J; Yuan S; Qiu L; Cai J; Yang W
    Sensors (Basel); 2016 Mar; 16(3):. PubMed ID: 26950130
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Study on Acoustic Emission Characteristics of Fatigue Damage of A7N01 Aluminum Alloy for High-Speed Trains.
    Zhu R; Fang S; Sun W; Chi D
    Materials (Basel); 2023 Jun; 16(12):. PubMed ID: 37374545
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The Use of the Acoustic Emission Method to Identify Crack Growth in 40CrMo Steel.
    Krampikowska A; Pała R; Dzioba I; Świt G
    Materials (Basel); 2019 Jul; 12(13):. PubMed ID: 31277224
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Transverse Crack Detection in 3D Angle Interlock Glass Fibre Composites Using Acoustic Emission.
    Gresil M; Saleh MN; Soutis C
    Materials (Basel); 2016 Aug; 9(8):. PubMed ID: 28773821
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Acoustic emission characteristics and fracture mechanism of cemented tailings backfill under uniaxial compression: experimental and numerical study.
    Cheng A; Zhou Y; Chen G; Huang S; Ye Z
    Environ Sci Pollut Res Int; 2023 Apr; 30(19):55143-55157. PubMed ID: 36890404
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Analytical and numerical modeling of nonlinear lamb wave interaction with a breathing crack with low-frequency modulation.
    Yuan P; Xu X; Glorieux C; Jia K; Chen J; Chen X; Yin A
    Ultrasonics; 2024 May; 140():107306. PubMed ID: 38579487
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.