These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

186 related articles for article (PubMed ID: 33076412)

  • 21. Analytical insight into "breathing" crack-induced acoustic nonlinearity with an application to quantitative evaluation of contact cracks.
    Wang K; Liu M; Su Z; Yuan S; Fan Z
    Ultrasonics; 2018 Aug; 88():157-167. PubMed ID: 29660569
    [TBL] [Abstract][Full Text] [Related]  

  • 22. S0 Lamb Mode Scattering Studies in Laminated Composite Plate Structures with Surface Breaking Cracks: Insights into Crack Opening Behavior.
    Gupta S; Rajagopal P
    Ultrasonics; 2023 Mar; 129():106901. PubMed ID: 36473285
    [TBL] [Abstract][Full Text] [Related]  

  • 23. State-of-the-art ensemble learning and unsupervised learning in fatigue crack recognition of glass fiber reinforced polyester composite (GFRP) using acoustic emission.
    Gholizadeh S; Leman Z; Baharudin BTHT
    Ultrasonics; 2023 Jul; 132():106998. PubMed ID: 37001339
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Quantitative Investigation of Acoustic Emission Waveform Parameters from Crack Opening in a Rail Section Using Clustering Algorithms and Advanced Signal Processing.
    Mahajan H; Banerjee S
    Sensors (Basel); 2022 Nov; 22(22):. PubMed ID: 36433240
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Lamb Wave-Minimum Sampling Variance Particle Filter-Based Fatigue Crack Prognosis.
    Yang W; Gao P
    Sensors (Basel); 2019 Mar; 19(5):. PubMed ID: 30832358
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Fatigue Crack Monitoring of T-Type Joints in Steel Offshore Oil and Gas Jacket Platform.
    Ali L; Khan S; Bashmal S; Iqbal N; Dai W; Bai Y
    Sensors (Basel); 2021 May; 21(9):. PubMed ID: 34068789
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Coherent Fiber-Optic Sensor for Ultra-Acoustic Crack Emissions.
    Di Luch I; Ferrario M; Fumagalli D; Carboni M; Martinelli M
    Sensors (Basel); 2021 Jul; 21(14):. PubMed ID: 34300414
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Nonlinear Lamb waves for fatigue damage identification in FRP-reinforced steel plates.
    Wang Y; Guan R; Lu Y
    Ultrasonics; 2017 Sep; 80():87-95. PubMed ID: 28511082
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Modeling nonlinearities of ultrasonic waves for fatigue damage characterization: theory, simulation, and experimental validation.
    Hong M; Su Z; Wang Q; Cheng L; Qing X
    Ultrasonics; 2014 Mar; 54(3):770-8. PubMed ID: 24156928
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Fatigue-Crack Detection in a Multi-Riveted Strap-Joint Aluminium Aircraft Panel Using Amplitude Characteristics of Diffuse Lamb Wave Field.
    Stolze FHG; Worden K; Manson G; Staszewski WJ
    Materials (Basel); 2023 Feb; 16(4):. PubMed ID: 36837249
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Detection of steel fatigue cracks with strain sensing sheets based on large area electronics.
    Yao Y; Glisic B
    Sensors (Basel); 2015 Apr; 15(4):8088-108. PubMed ID: 25853407
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Strict-Feedback Backstepping Digital Twin and Machine Learning Solution in AE Signals for Bearing Crack Identification.
    Piltan F; Toma RN; Shon D; Im K; Choi HK; Yoo DS; Kim JM
    Sensors (Basel); 2022 Jan; 22(2):. PubMed ID: 35062499
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Damage detection of fatigue cracks under nonlinear boundary condition using subharmonic resonance.
    Zhang M; Xiao L; Qu W; Lu Y
    Ultrasonics; 2017 May; 77():152-159. PubMed ID: 28237824
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Acoustic emission during fatigue of porous-coated Ti-6Al-4V implant alloy.
    Kohn DH; Ducheyne P; Awerbuch J
    J Biomed Mater Res; 1992 Jan; 26(1):19-38. PubMed ID: 1577833
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Lamb Wave Scattering Analysis for Interface Damage Detection between a Surface-Mounted Block and Elastic Plate.
    Golub MV; Shpak AN; Mueller I; Fomenko SI; Fritzen CP
    Sensors (Basel); 2021 Jan; 21(3):. PubMed ID: 33525383
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Active Monitoring of Fatigue Crack in the Weld Zone of Bogie Frames Using Ultrasonic Guided Waves.
    Yan J; Jin H; Sun H; Qing X
    Sensors (Basel); 2019 Jul; 19(15):. PubMed ID: 31370343
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Influence of attenuation on acoustic emission signals in carbon fiber reinforced polymer panels.
    Asamene K; Hudson L; Sundaresan M
    Ultrasonics; 2015 May; 59():86-93. PubMed ID: 25682294
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Damage Determination in Ceramic Composites Subject to Tensile Fatigue Using Acoustic Emission.
    Morscher GN; Han Z
    Materials (Basel); 2018 Dec; 11(12):. PubMed ID: 30563226
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Acoustic emission based monitoring of the microdamage evolution during fatigue of human cortical bone.
    Agcaoglu S; Akkus O
    J Biomech Eng; 2013 Aug; 135(8):81005. PubMed ID: 23760184
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Baseline-free estimation of residual fatigue life using a third order acoustic nonlinear parameter.
    Amura M; Meo M; Amerini F
    J Acoust Soc Am; 2011 Oct; 130(4):1829-37. PubMed ID: 21973336
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.