These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

129 related articles for article (PubMed ID: 33076430)

  • 1. Design, Fabrication, and Performance Evaluation of Portable and Large-Area Blackbody System.
    Bae JY; Choi W; Hong SJ; Kim S; Kim E; Lee CH; Han YH; Hur H; Lee KS; Chang KS; Kim GH; Kim G
    Sensors (Basel); 2020 Oct; 20(20):. PubMed ID: 33076430
    [TBL] [Abstract][Full Text] [Related]  

  • 2. An absolute calibration source for laboratory and satellite infrared spectrometers.
    Karoli AR; Hickey JR; Nelson RE
    Appl Opt; 1967 Jul; 6(7):1183-8. PubMed ID: 20062159
    [TBL] [Abstract][Full Text] [Related]  

  • 3. High-temperature sensor instrumentation with a thin-film-based sapphire fiber.
    Guo Y; Xia W; Hu Z; Wang M
    Appl Opt; 2017 Mar; 56(8):2068-2073. PubMed ID: 28375289
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A millikelvin precision temperature control system designed for a low cost, portable and variable temperature blackbody from 298.15 to 693.15 K.
    Liang P; Hu T; Xu J; Xu Q; Ding J
    Rev Sci Instrum; 2023 May; 94(5):. PubMed ID: 37125858
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Design and Implementation of a Ku-Band High-Precision Blackbody Calibration Target.
    Liu J; Sun Z; Sun G; Li Y; Cao T; Tang W
    Micromachines (Basel); 2022 Dec; 14(1):. PubMed ID: 36677079
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A small-size transfer blackbody cavity for calibration of infrared ear thermometers.
    Kim GJ; Yoo YS; Kim BH; Lim SD; Hyun Song J
    Physiol Meas; 2014 May; 35(5):753-62. PubMed ID: 24671115
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Transfer Calibration Validation Tests on a Heat Flux Sensor in the 51 mm High-Temperature Blackbody.
    Murthy AV; Tsai BK; Saunders RD
    J Res Natl Inst Stand Technol; 2001; 106(5):823-31. PubMed ID: 27500049
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Infrared cameras are potential traceable "fixed points" for future thermometry studies.
    Yap Kannan R; Keresztes K; Hussain S; Coats TJ; Bown MJ
    J Med Eng Technol; 2015; 39(8):485-9. PubMed ID: 26468981
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Remote-sensing infrared thermometer with radiation balancing.
    Harigovindan S; Sobha KS
    Appl Opt; 2000 May; 39(15):2461-6. PubMed ID: 18345160
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Large-area perfect blackbody sheets having aperiodic array of surface micro-cavities for high-precision thermal imager calibration.
    Shimizu Y; Koshikawa H; Imbe M; Yamaki T; Amemiya K
    Opt Express; 2020 Jul; 28(15):22606-22616. PubMed ID: 32752518
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Equivalent Calibration Method Based on a Blackbody Baffle Substitution for a Large External Surface-Source Blackbody.
    Pang X; Yu Y; Li Z; Sun Z; Li C; Yang G
    Sensors (Basel); 2022 Aug; 22(15):. PubMed ID: 35957402
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Blackbody calibration sources of high accuracy for a spaceborne infrared instrument: the Along Track Scanning Radiometer.
    Mason IM; Sheather PH; Bowles JA; Davies G
    Appl Opt; 1996 Feb; 35(4):629-39. PubMed ID: 21069050
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Perfect blackbody radiation from a graphene nanostructure with application to high-temperature spectral emissivity measurements.
    Matsumoto T; Koizumi T; Kawakami Y; Okamoto K; Tomita M
    Opt Express; 2013 Dec; 21(25):30964-74. PubMed ID: 24514669
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Micro-cavity perfect blackbody composite with good heat transfer towards a flat-plate reference radiation source for thermal imagers.
    Shimizu Y; Koshikawa H; Imbe M; Yamaki T; Godo K; Sasajima N; Amemiya K
    Opt Lett; 2021 Oct; 46(19):4871-4874. PubMed ID: 34598221
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Highly emissive spaceborne blackbody radiation source based on light capture.
    Zhou J; Hao X; Wang X; Song J; Xing Z; Li X; Wang B; Han C; Sima RH
    Opt Express; 2022 Jun; 30(12):20859-20870. PubMed ID: 36224821
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Design, development, and evaluation of a simple blackbody radiative source.
    Castrejón-García R; Castrejón-Pita JR; Castrejón-Pita AA
    Rev Sci Instrum; 2010 May; 81(5):055106. PubMed ID: 20515171
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Blackbody-cavity ideal absorbers for solar energy harvesting.
    Tian Y; Liu X; Ghanekar A; Chen F; Caratenuto A; Zheng Y
    Sci Rep; 2020 Nov; 10(1):20304. PubMed ID: 33219278
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A method for optimizing the reference temperature in the effective emissivity calculation of nonisothermal blackbody cavities.
    He S; Dai C; Wang Y; Liu J; Xie Y; Feng G; Wang J
    Opt Express; 2020 Sep; 28(20):29829-29842. PubMed ID: 33114873
    [TBL] [Abstract][Full Text] [Related]  

  • 19. An Oil-Bath-Based 293 K to 473 K Blackbody Source.
    Fowler JB
    J Res Natl Inst Stand Technol; 1996; 101(5):629-637. PubMed ID: 27805082
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A Microbolometer System for Radiation Detection in the THz Frequency Range with a Resonating Cavity Fabricated in the CMOS Technology.
    Sesek A; Zemva A; Trontelj J
    Recent Pat Nanotechnol; 2018 Feb; 12(1):34-44. PubMed ID: 28675992
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.