These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

165 related articles for article (PubMed ID: 33076576)

  • 1. Tripping Avoidance Lower Extremity Exoskeleton Based on Virtual Potential Field for Elderly People.
    Zhang Z; Li C; Zheng T; Li H; Zhao S; Zhao J; Zhu Y
    Sensors (Basel); 2020 Oct; 20(20):. PubMed ID: 33076576
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Blending control method of lower limb exoskeleton toward tripping-free stair climbing.
    Zhang ZW; Liu GF; Zheng TJ; Li HW; Zhao SK; Zhao J; Zhu YH
    ISA Trans; 2022 Dec; 131():610-627. PubMed ID: 35697540
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A Velocity-Based Flow Field Control Approach for Reshaping Movement of Stroke-Impaired Individuals with a Lower-Limb Exoskeleton.
    Martinez A; Lawson B; Goldfarb M
    Annu Int Conf IEEE Eng Med Biol Soc; 2018 Jul; 2018():2797-2800. PubMed ID: 30440982
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Terrain Feature Estimation Method for a Lower Limb Exoskeleton Using Kinematic Analysis and Center of Pressure.
    Shim M; Han JI; Choi HS; Ha SM; Kim JH; Baek YS
    Sensors (Basel); 2019 Oct; 19(20):. PubMed ID: 31614811
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Design and analysis of a lightweight lower extremity exoskeleton with novel compliant ankle joints.
    He Y; Liu J; Li F; Cao W; Wu X
    Technol Health Care; 2022; 30(4):881-894. PubMed ID: 34657860
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A Lightweight Exoskeleton-Based Portable Gait Data Collection System.
    Haque MR; Imtiaz MH; Kwak ST; Sazonov E; Chang YH; Shen X
    Sensors (Basel); 2021 Jan; 21(3):. PubMed ID: 33498956
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The Development and Preliminary Test of a Powered Alternately Walking Exoskeleton With the Wheeled Foot for Paraplegic Patients.
    Ma Q; Ji L; Wang R
    IEEE Trans Neural Syst Rehabil Eng; 2018 Feb; 26(2):451-459. PubMed ID: 29432112
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Kinematics study of a 10 degrees-of-freedom lower extremity exoskeleton for crutch-less walking rehabilitation.
    Liu J; He Y; Li F; Cao W; Wu X
    Technol Health Care; 2022; 30(3):747-755. PubMed ID: 34486995
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Preliminary assessment of a lower-limb exoskeleton controller for guiding leg movement in overground walking.
    Martinez A; Lawson B; Goldfarb M
    IEEE Int Conf Rehabil Robot; 2017 Jul; 2017():375-380. PubMed ID: 28813848
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Design and evaluation of a modular lower limb exoskeleton for rehabilitation.
    Dos Santos WM; Nogueira SL; de Oliveira GC; Pena GG; Siqueira AAG
    IEEE Int Conf Rehabil Robot; 2017 Jul; 2017():447-451. PubMed ID: 28813860
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A Kinematic Model of a Humanoid Lower Limb Exoskeleton with Hydraulic Actuators.
    Glowinski S; Krzyzynski T; Bryndal A; Maciejewski I
    Sensors (Basel); 2020 Oct; 20(21):. PubMed ID: 33121194
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A Unified Gait Phase Estimation and Control of Exoskeleton using Virtual Energy Regulator (VER).
    Nasiri R; Dinovitzer H; Arami A
    IEEE Int Conf Rehabil Robot; 2022 Jul; 2022():1-6. PubMed ID: 36176167
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Monitoring Contact Behavior During Assisted Walking With a Lower Limb Exoskeleton.
    Wan X; Liu Y; Akiyama Y; Yamada Y
    IEEE Trans Neural Syst Rehabil Eng; 2020 Apr; 28(4):869-877. PubMed ID: 32167901
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Exoskeleton robot control for synchronous walking assistance in repetitive manual handling works based on dual unscented Kalman filter.
    Sado F; Yap HJ; Ghazilla RAR; Ahmad N
    PLoS One; 2018; 13(7):e0200193. PubMed ID: 30001415
    [TBL] [Abstract][Full Text] [Related]  

  • 15. An assistive control approach for a lower-limb exoskeleton to facilitate recovery of walking following stroke.
    Murray SA; Ha KH; Hartigan C; Goldfarb M
    IEEE Trans Neural Syst Rehabil Eng; 2015 May; 23(3):441-9. PubMed ID: 25134084
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A Single-Joint Implementation of Flow Control: Knee Joint Walking Assistance for Individuals With Mobility Impairment.
    Martinez A; Durrough C; Goldfarb M
    IEEE Trans Neural Syst Rehabil Eng; 2020 Apr; 28(4):934-942. PubMed ID: 32142447
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Lower Limb Exoskeleton for Rehabilitation with Flexible Joints and Movement Routines Commanded by Electromyography and Baropodometry Sensors.
    Rosales-Luengas Y; Espinosa-Espejel KI; Lopéz-Gutiérrez R; Salazar S; Lozano R
    Sensors (Basel); 2023 Jun; 23(11):. PubMed ID: 37299979
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Control of a lower limb exoskeleton using Learning from Demonstration and an iterative Linear Quadratic Regulator Controller: A simulation study.
    Goldfarb N; Zhou H; Bales C; Fischer GS
    Annu Int Conf IEEE Eng Med Biol Soc; 2021 Nov; 2021():4687-4693. PubMed ID: 34892259
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Simulation of impedance control applied to lower limb exoskeletons: assessment of its effectiveness in assisting disabled people during gait swing phase.
    Mosconi D; Siqueira AAG
    Annu Int Conf IEEE Eng Med Biol Soc; 2021 Nov; 2021():4694-4699. PubMed ID: 34892260
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Channel Synergy-based Human-Robot Interface for a Lower Limb Walking Assistance Exoskeleton.
    Shi K; Huang R; Mu F; Peng Z; Yin J; Cheng H
    Annu Int Conf IEEE Eng Med Biol Soc; 2021 Nov; 2021():1076-1081. PubMed ID: 34891474
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.