These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
159 related articles for article (PubMed ID: 33076576)
21. Modifying upper-limb inter-joint coordination in healthy subjects by training with a robotic exoskeleton. Proietti T; Guigon E; Roby-Brami A; Jarrassé N J Neuroeng Rehabil; 2017 Jun; 14(1):55. PubMed ID: 28606179 [TBL] [Abstract][Full Text] [Related]
22. Walking Strategies and Performance Evaluation for Human-Exoskeleton Systems under Admittance Control. Liang C; Hsiao T Sensors (Basel); 2020 Aug; 20(15):. PubMed ID: 32759803 [TBL] [Abstract][Full Text] [Related]
23. Template model inspired leg force feedback based control can assist human walking. Zhao G; Sharbafi M; Vlutters M; van Asseldonk E; Seyfarth A IEEE Int Conf Rehabil Robot; 2017 Jul; 2017():473-478. PubMed ID: 28813865 [TBL] [Abstract][Full Text] [Related]
24. Design of a Payload Adjustment Device for an Unpowered Lower-Limb Exoskeleton. Yun J; Kang O; Joe HM Sensors (Basel); 2021 Jun; 21(12):. PubMed ID: 34208291 [TBL] [Abstract][Full Text] [Related]
26. Bio-inspired control of joint torque and knee stiffness in a robotic lower limb exoskeleton using a central pattern generator. Schrade SO; Nager Y; Wu AR; Gassert R; Ijspeert A IEEE Int Conf Rehabil Robot; 2017 Jul; 2017():1387-1394. PubMed ID: 28814014 [TBL] [Abstract][Full Text] [Related]
27. Mechanics and energetics of post-stroke walking aided by a powered ankle exoskeleton with speed-adaptive myoelectric control. McCain EM; Dick TJM; Giest TN; Nuckols RW; Lewek MD; Saul KR; Sawicki GS J Neuroeng Rehabil; 2019 May; 16(1):57. PubMed ID: 31092269 [TBL] [Abstract][Full Text] [Related]
28. Design of a Purely Mechanical Sensor-Controller Integrated System for Walking Assistance on an Ankle-Foot Exoskeleton. Wang X; Guo S; Qu H; Song M Sensors (Basel); 2019 Jul; 19(14):. PubMed ID: 31331126 [TBL] [Abstract][Full Text] [Related]
29. Co-Ex: A Torque-Controllable Lower Body Exoskeleton for Dependable Human-Robot Co-existence. Yildirim MC; Kansizoglu AT; Emre S; Derman M; Coruk S; Soliman AF; Sendur P; Ugurlu B IEEE Int Conf Rehabil Robot; 2019 Jun; 2019():605-610. PubMed ID: 31374697 [TBL] [Abstract][Full Text] [Related]
30. Momentum-Based Balance Control of a Lower-Limb Exoskeleton During Stance. Vallinas A; Keemink A; Bayon C; van Asseldonk E; van der Kooij H IEEE Int Conf Rehabil Robot; 2023 Sep; 2023():1-6. PubMed ID: 37941272 [TBL] [Abstract][Full Text] [Related]
31. Development of a "transparent operation mode" for a lower-limb exoskeleton designed for children with cerebral palsy. Andrade RM; Sapienza S; Bonato P IEEE Int Conf Rehabil Robot; 2019 Jun; 2019():512-517. PubMed ID: 31374681 [TBL] [Abstract][Full Text] [Related]
32. Biomechanical design of escalading lower limb exoskeleton with novel linkage joints. Zhang G; Liu G; Ma S; Wang T; Zhao J; Zhu Y Technol Health Care; 2017 Jul; 25(S1):267-273. PubMed ID: 28582915 [TBL] [Abstract][Full Text] [Related]
33. Human-in-the-Loop Cooperative Control of a Walking Exoskeleton for Following Time-Variable Human Intention. Li Z; Zhang T; Huang P; Li G IEEE Trans Cybern; 2024 Apr; 54(4):2142-2154. PubMed ID: 36279358 [TBL] [Abstract][Full Text] [Related]
34. Modeling and Simulation of a Lower Extremity Powered Exoskeleton. Fournier BN; Lemaire ED; Smith AJJ; Doumit M IEEE Trans Neural Syst Rehabil Eng; 2018 Aug; 26(8):1596-1603. PubMed ID: 30004879 [TBL] [Abstract][Full Text] [Related]
35. Learning to walk with an adaptive gain proportional myoelectric controller for a robotic ankle exoskeleton. Koller JR; Jacobs DA; Ferris DP; Remy CD J Neuroeng Rehabil; 2015 Nov; 12():97. PubMed ID: 26536868 [TBL] [Abstract][Full Text] [Related]
36. Recognizing Continuous Multiple Degrees of Freedom Foot Movements With Inertial Sensors. Zhu C; Luo L; Mai J; Wang Q IEEE Trans Neural Syst Rehabil Eng; 2022; 30():431-440. PubMed ID: 35130162 [TBL] [Abstract][Full Text] [Related]
37. A passively safe cable driven upper limb rehabilitation exoskeleton. Chen Y; Fan J; Zhu Y; Zhao J; Cai H Technol Health Care; 2015; 23 Suppl 2():S197-202. PubMed ID: 26410484 [TBL] [Abstract][Full Text] [Related]
38. Reduced Adaptive Fuzzy Decoupling Control for Lower Limb Exoskeleton. Sun W; Lin JW; Su SF; Wang N; Er MJ IEEE Trans Cybern; 2021 Mar; 51(3):1099-1109. PubMed ID: 32112693 [TBL] [Abstract][Full Text] [Related]
39. [Comfort optimization of a new type of foot mechanism for lower extremity exoskeleton]. Luan Y; Zhang J; Qi K; Yang G Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2020 Apr; 37(2):324-333. PubMed ID: 32329286 [TBL] [Abstract][Full Text] [Related]
40. Three-dimensional modelling of wheelchair contrived with lower limb exoskeleton for right hemiplegic dysfunction. Nithyaa AN; Poonguzhali S; Vigneshwari N Proc Inst Mech Eng H; 2020 Jul; 234(7):651-659. PubMed ID: 32255733 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]