These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
235 related articles for article (PubMed ID: 33076656)
1. Scalable Synthesis of Manganese-Doped Hydrated Vanadium Oxide as a Cathode Material for Aqueous Zinc-Metal Battery. Ghosh M; Dilwale S; Vijayakumar V; Kurungot S ACS Appl Mater Interfaces; 2020 Oct; 12(43):48542-48552. PubMed ID: 33076656 [TBL] [Abstract][Full Text] [Related]
2. Novel Polymer/Barium Intercalated Vanadium Pentoxide with Expanded Interlayer Spacing as High-Rate and Durable Cathode for Aqueous Zinc-Ion Batteries. Jiang Y; Lu J; Liu W; Xing C; Lu S; Liu X; Xu Y; Zhang J; Zhao B ACS Appl Mater Interfaces; 2022 Apr; 14(15):17415-17425. PubMed ID: 35389628 [TBL] [Abstract][Full Text] [Related]
3. Hydrated Calcium Vanadate Nanoribbons with a Stable Structure and Fast Ion Diffusion as a Cathode for Quasi-Solid-State Zinc-Ion Batteries. Liang P; Zhu K; Rao Y; Kong Z; Chen J; Zheng H; Liu J; Yan K; Wang J; Zeng K ACS Appl Mater Interfaces; 2024 May; 16(19):24723-24733. PubMed ID: 38695440 [TBL] [Abstract][Full Text] [Related]
4. Polyaniline-expanded the interlayer spacing of hydrated vanadium pentoxide by the interface-intercalation for aqueous rechargeable Zn-ion batteries. Zhang Y; Xu L; Jiang H; Liu Y; Meng C J Colloid Interface Sci; 2021 Dec; 603():641-650. PubMed ID: 34225069 [TBL] [Abstract][Full Text] [Related]
5. A Deep-Cycle Aqueous Zinc-Ion Battery Containing an Oxygen-Deficient Vanadium Oxide Cathode. Liao M; Wang J; Ye L; Sun H; Wen Y; Wang C; Sun X; Wang B; Peng H Angew Chem Int Ed Engl; 2020 Feb; 59(6):2273-2278. PubMed ID: 31743581 [TBL] [Abstract][Full Text] [Related]
6. Oxygen Defect Hydrated Vanadium Dioxide/Graphene as a Superior Cathode for Aqueous Zn Batteries. Huang S; He S; Qin H; Hou X ACS Appl Mater Interfaces; 2021 Sep; 13(37):44379-44388. PubMed ID: 34495640 [TBL] [Abstract][Full Text] [Related]
7. Engineering a High-Energy-Density and Long Lifespan Aqueous Zinc Battery via Ammonium Vanadium Bronze. Bin D; Liu Y; Yang B; Huang J; Dong X; Zhang X; Wang Y; Xia Y ACS Appl Mater Interfaces; 2019 Jun; 11(23):20796-20803. PubMed ID: 31090395 [TBL] [Abstract][Full Text] [Related]
8. Rechargeable aqueous zinc-manganese dioxide batteries with high energy and power densities. Zhang N; Cheng F; Liu J; Wang L; Long X; Liu X; Li F; Chen J Nat Commun; 2017 Sep; 8(1):405. PubMed ID: 28864823 [TBL] [Abstract][Full Text] [Related]
9. Boosting the zinc ion storage capacity and cycling stability of interlayer-expanded vanadium disulfide through in-situ electrochemical oxidation strategy. Yang M; Wang Z; Ben H; Zhao M; Luo J; Chen D; Lu Z; Wang L; Liu C J Colloid Interface Sci; 2022 Feb; 607(Pt 1):68-75. PubMed ID: 34492355 [TBL] [Abstract][Full Text] [Related]
10. Zn/V Hu P; Yan M; Zhu T; Wang X; Wei X; Li J; Zhou L; Li Z; Chen L; Mai L ACS Appl Mater Interfaces; 2017 Dec; 9(49):42717-42722. PubMed ID: 29155554 [TBL] [Abstract][Full Text] [Related]
11. Facile and Rapid Synthesis of Porous Hydrated V Guo K; Cheng W; Chen H; Li H; Chen J; Liu H; Tu Y; She W; Huang Z; Wan Y; Zou L; Li Z; Zhong X; Wu Y; Wang X; Yu N Nanomaterials (Basel); 2022 Jul; 12(14):. PubMed ID: 35889623 [TBL] [Abstract][Full Text] [Related]
12. Aging-Responsive Phase Transition of VOOH to V Nagraj R; Puttaswamy R; Yadav P; Beere HK; Upadhyay SN; Sanna Kotrappanavar N; Pakhira S; Ghosh D ACS Appl Mater Interfaces; 2022 Dec; 14(51):56886-56899. PubMed ID: 36516045 [TBL] [Abstract][Full Text] [Related]
13. Boosting the Cyclic Stability of Aqueous Zinc-Ion Battery Based on Al-Doped V Qian Li ; Wei T; Ma K; Yang G; Wang C ACS Appl Mater Interfaces; 2019 Jun; 11(23):20888-20894. PubMed ID: 31117461 [TBL] [Abstract][Full Text] [Related]
14. Reconstructing interfacial manganese deposition for durable aqueous zinc-manganese batteries. Hu Y; Liu Z; Li L; Guo S; Xie X; Luo Z; Fang G; Liang S Natl Sci Rev; 2023 Oct; 10(10):nwad220. PubMed ID: 37693122 [TBL] [Abstract][Full Text] [Related]
15. Tremella-like Hydrated Vanadium Oxide Cathode with an Architectural Design Strategy toward Ultralong Lifespan Aqueous Zinc-Ion Batteries. Guan X; Sun Q; Sun C; Duan T; Nie W; Liu Y; Zhao K; Cheng H; Lu X ACS Appl Mater Interfaces; 2021 Sep; 13(35):41688-41697. PubMed ID: 34436858 [TBL] [Abstract][Full Text] [Related]
16. Highly Stable Aqueous Zinc-Ion Storage Using a Layered Calcium Vanadium Oxide Bronze Cathode. Xia C; Guo J; Li P; Zhang X; Alshareef HN Angew Chem Int Ed Engl; 2018 Apr; 57(15):3943-3948. PubMed ID: 29432667 [TBL] [Abstract][Full Text] [Related]
17. Laser-Scribed Battery Electrodes for Ultrafast Zinc-Ion Energy Storage. Liu B; Huang A; Yuan X; Chang X; Yang Z; Lyle K; Kaner RB; Li Y Adv Mater; 2024 Aug; 36(32):e2404796. PubMed ID: 38809576 [TBL] [Abstract][Full Text] [Related]
18. Vanadium Pentoxide-Based Composite Synthesized Using Microwave Water Plasma for Cathode Material in Rechargeable Magnesium Batteries. Inamoto M; Kurihara H; Yajima T Materials (Basel); 2013 Oct; 6(10):4514-4522. PubMed ID: 28788344 [TBL] [Abstract][Full Text] [Related]
19. Self-Healing Lamellar Structure Boosts Highly Stable Zinc-Storage Property of Bilayered Vanadium Oxides. Yang G; Wei T; Wang C ACS Appl Mater Interfaces; 2018 Oct; 10(41):35079-35089. PubMed ID: 30247019 [TBL] [Abstract][Full Text] [Related]
20. Multi-metal ions co-regulated vanadium oxide cathode toward long-life aqueous zinc-ion batteries. Ma MY; Liu Y; Yang JL; Li SY; Du M; Liu DH; Hao ZL; Guo JZ; Wu XL J Colloid Interface Sci; 2024 Sep; 670():174-181. PubMed ID: 38761570 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]