These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
303 related articles for article (PubMed ID: 33076816)
1. Implementation of homology based and non-homology based computational methods for the identification and annotation of orphan enzymes: using Mycobacterium tuberculosis H37Rv as a case study. Sinha S; Lynn AM; Desai DK BMC Bioinformatics; 2020 Oct; 21(1):466. PubMed ID: 33076816 [TBL] [Abstract][Full Text] [Related]
2. A Bayesian method for identifying missing enzymes in predicted metabolic pathway databases. Green ML; Karp PD BMC Bioinformatics; 2004 Jun; 5():76. PubMed ID: 15189570 [TBL] [Abstract][Full Text] [Related]
4. Accurate prediction of protein functional class from sequence in the Mycobacterium tuberculosis and Escherichia coli genomes using data mining. King RD; Karwath A; Clare A; Dehaspe L Yeast; 2000 Dec; 17(4):283-93. PubMed ID: 11119305 [TBL] [Abstract][Full Text] [Related]
5. Re-annotation of the genome sequence of Mycobacterium tuberculosis H37Rv. Camus JC; Pryor MJ; Médigue C; Cole ST Microbiology (Reading); 2002 Oct; 148(Pt 10):2967-2973. PubMed ID: 12368430 [TBL] [Abstract][Full Text] [Related]
6. Functional assignment of Mycobacterium tuberculosis proteome revealed by genome-scale fold-recognition. Mao C; Shukla M; Larrouy-Maumus G; Dix FL; Kelley LA; Sternberg MJ; Sobral BW; de Carvalho LP Tuberculosis (Edinb); 2013 Jan; 93(1):40-6. PubMed ID: 23287603 [TBL] [Abstract][Full Text] [Related]
11. Toward the virtual screening of potential drugs in the homology modeled NAD+ dependent DNA ligase from Mycobacterium tuberculosis. Singh V; Somvanshi P Protein Pept Lett; 2010 Feb; 17(2):269-76. PubMed ID: 20214650 [TBL] [Abstract][Full Text] [Related]
12. Investigating function roles of hypothetical proteins encoded by the Mycobacterium tuberculosis H37Rv genome. Yang Z; Zeng X; Tsui SK BMC Genomics; 2019 May; 20(1):394. PubMed ID: 31113361 [TBL] [Abstract][Full Text] [Related]
14. Stringent DDI-based prediction of H. sapiens-M. tuberculosis H37Rv protein-protein interactions. Zhou H; Rezaei J; Hugo W; Gao S; Jin J; Fan M; Yong CH; Wozniak M; Wong L BMC Syst Biol; 2013; 7 Suppl 6(Suppl 6):S6. PubMed ID: 24564941 [TBL] [Abstract][Full Text] [Related]
15. The CanOE strategy: integrating genomic and metabolic contexts across multiple prokaryote genomes to find candidate genes for orphan enzymes. Smith AA; Belda E; Viari A; Medigue C; Vallenet D PLoS Comput Biol; 2012 May; 8(5):e1002540. PubMed ID: 22693442 [TBL] [Abstract][Full Text] [Related]
16. [Analysis, identification and correction of some errors of model refseqs appeared in NCBI Human Gene Database by in silico cloning and experimental verification of novel human genes]. Zhang DL; Ji L; Li YD Yi Chuan Xue Bao; 2004 May; 31(5):431-43. PubMed ID: 15478601 [TBL] [Abstract][Full Text] [Related]
17. Rapid identification of sequences for orphan enzymes to power accurate protein annotation. Ramkissoon KR; Miller JK; Ojha S; Watson DS; Bomar MG; Galande AK; Shearer AG PLoS One; 2013; 8(12):e84508. PubMed ID: 24386392 [TBL] [Abstract][Full Text] [Related]
18. Fragment Profiling Approach to Inhibitors of the Orphan M. tuberculosis P450 CYP144A1. Kavanagh ME; Chenge J; Zoufir A; McLean KJ; Coyne AG; Bender A; Munro AW; Abell C Biochemistry; 2017 Mar; 56(11):1559-1572. PubMed ID: 28169518 [TBL] [Abstract][Full Text] [Related]
19. A nuclear magnetic resonance based approach to accurate functional annotation of putative enzymes in the methanogen Methanosarcina acetivorans. Chen Y; Apolinario E; Brachova L; Kelman Z; Li Z; Nikolau BJ; Showman L; Sowers K; Orban J BMC Genomics; 2011 Jun; 12 Suppl 1(Suppl 1):S7. PubMed ID: 21810209 [TBL] [Abstract][Full Text] [Related]