These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
251 related articles for article (PubMed ID: 33077173)
1. Adaptive sliding-mode controller of a lower limb mobile exoskeleton for active rehabilitation. Pérez-San Lázaro R; Salgado I; Chairez I ISA Trans; 2021 Mar; 109():218-228. PubMed ID: 33077173 [TBL] [Abstract][Full Text] [Related]
2. Improved Active Disturbance Rejection Control for Trajectory Tracking Control of Lower Limb Robotic Rehabilitation Exoskeleton. Aole S; Elamvazuthi I; Waghmare L; Patre B; Meriaudeau F Sensors (Basel); 2020 Jun; 20(13):. PubMed ID: 32630115 [TBL] [Abstract][Full Text] [Related]
3. Design and control of a lower limb rehabilitation robot considering undesirable torques of the patient's limb. Almaghout K; Tarvirdizadeh B; Alipour K; Hadi A Proc Inst Mech Eng H; 2020 Dec; 234(12):1457-1471. PubMed ID: 32777995 [TBL] [Abstract][Full Text] [Related]
4. Hybrid position/force output feedback second-order sliding mode control for a prototype of an active orthosis used in back-assisted mobilization. Ballesteros-Escamilla M; Cruz-Ortiz D; Salgado I; Chairez I Med Biol Eng Comput; 2019 Sep; 57(9):1843-1860. PubMed ID: 31209711 [TBL] [Abstract][Full Text] [Related]
5. Time-delay estimation based computed torque control with robust adaptive RBF neural network compensator for a rehabilitation exoskeleton. Han S; Wang H; Tian Y; Christov N ISA Trans; 2020 Feb; 97():171-181. PubMed ID: 31399252 [TBL] [Abstract][Full Text] [Related]
6. Development, Dynamic Modeling, and Multi-Modal Control of a Therapeutic Exoskeleton for Upper Limb Rehabilitation Training. Wu Q; Wu H Sensors (Basel); 2018 Oct; 18(11):. PubMed ID: 30356005 [TBL] [Abstract][Full Text] [Related]
7. Adaptive neural fault-tolerant prescribed performance control of a rehabilitation exoskeleton for lower limb passive training. Yang Y; Huang D; Ma L; Liu X; Li Y ISA Trans; 2024 Aug; 151():143-152. PubMed ID: 38853110 [TBL] [Abstract][Full Text] [Related]
8. Design and validation of a pediatric gait assistance exoskeleton system with fast non-singular terminal sliding mode controller. Narayan J; Abbas M; Dwivedy SK Med Eng Phys; 2024 Jan; 123():104080. PubMed ID: 38365333 [TBL] [Abstract][Full Text] [Related]
9. Adaptive control based on an on-line parameter estimation of an upper limb exoskeleton. Riani A; Madani T; Hadri AE; Benallegue A IEEE Int Conf Rehabil Robot; 2017 Jul; 2017():695-701. PubMed ID: 28813901 [TBL] [Abstract][Full Text] [Related]
10. Sliding Mode-Based Active Disturbance Rejection Control of Assistive Exoskeleton Device for Rehabilitation of Disabled Lower Limbs. Alawad NA; Humaidi AJ; Alaraji AS An Acad Bras Cienc; 2023; 95(2):e20220680. PubMed ID: 37341275 [TBL] [Abstract][Full Text] [Related]
11. Development of the Biomech-Wrist: A 3-DOF Exoskeleton for Rehabilitation and Training of Human Wrist. Garcia-Leal R; Cruz-Ortiz D; Ballesteros M; Huegel JC IEEE Int Conf Rehabil Robot; 2023 Sep; 2023():1-6. PubMed ID: 37941273 [TBL] [Abstract][Full Text] [Related]
12. A Self-Coordinating Controller with Balance-Guiding Ability for Lower-Limb Rehabilitation Exoskeleton Robot. Qin L; Ji H; Chen M; Wang K Sensors (Basel); 2023 Jun; 23(11):. PubMed ID: 37300038 [TBL] [Abstract][Full Text] [Related]
13. Model-free finite-time robust control using fractional-order ultra-local model and prescribed performance sliding surface for upper-limb rehabilitation exoskeleton. He D; Wang H; Tian Y; Ma X ISA Trans; 2024 Apr; 147():511-526. PubMed ID: 38336511 [TBL] [Abstract][Full Text] [Related]
14. The Wearable Lower Limb Rehabilitation Exoskeleton Kinematic Analysis and Simulation. Li J; Peng J; Lu Z; Huang K Biomed Res Int; 2022; 2022():5029663. PubMed ID: 36072470 [TBL] [Abstract][Full Text] [Related]
15. Nonlinear disturbance observer based sliding mode control of a cable-driven rehabilitation robot. Niu J; Yang Q; Chen G; Song R IEEE Int Conf Rehabil Robot; 2017 Jul; 2017():664-669. PubMed ID: 28813896 [TBL] [Abstract][Full Text] [Related]
16. Inertia compensation control of a one-degree-of-freedom exoskeleton for lower-limb assistance: initial experiments. Aguirre-Ollinger G; Colgate JE; Peshkin MA; Goswami A IEEE Trans Neural Syst Rehabil Eng; 2012 Jan; 20(1):68-77. PubMed ID: 22271684 [TBL] [Abstract][Full Text] [Related]
17. Research on the Motion Control Strategy of a Lower-Limb Exoskeleton Rehabilitation Robot Using the Twin Delayed Deep Deterministic Policy Gradient Algorithm. Guo Y; He M; Tong X; Zhang M; Huang L Sensors (Basel); 2024 Sep; 24(18):. PubMed ID: 39338759 [TBL] [Abstract][Full Text] [Related]
18. An Assistive Control Strategy for Rehabilitation Robots Using Velocity Field and Force Field. Asl HJ; Narikiyo T IEEE Int Conf Rehabil Robot; 2019 Jun; 2019():790-795. PubMed ID: 31374727 [TBL] [Abstract][Full Text] [Related]
19. Robustness and Tracking Performance Evaluation of PID Motion Control of 7 DoF Anthropomorphic Exoskeleton Robot Assisted Upper Limb Rehabilitation. Ahmed T; Islam MR; Brahmi B; Rahman MH Sensors (Basel); 2022 May; 22(10):. PubMed ID: 35632155 [TBL] [Abstract][Full Text] [Related]
20. Adaptive Continuous Integral-Sliding-Mode Controller for Wearable Robots: Application to an Upper Limb Exoskeleton. Jebri A; Madani T; Djouani K IEEE Int Conf Rehabil Robot; 2019 Jun; 2019():766-771. PubMed ID: 31374723 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]