These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
138 related articles for article (PubMed ID: 33077218)
41. Integrated energy production and reduction of the environmental impact at alcohol distillery plants. van Haandel AC Water Sci Technol; 2005; 52(1-2):49-57. PubMed ID: 16180408 [TBL] [Abstract][Full Text] [Related]
42. Fire lead to disturbance on organic carbon under sugarcane cultivation but is recovered by amendment with vinasse. Dos Santos OAQ; Tavares OCH; García AC; Rossi CQ; de Moura OVT; Pereira W; da Silva Rodrigues Pinto LA; Berbara RLL; Pereira MG Sci Total Environ; 2020 Oct; 739():140063. PubMed ID: 32758952 [TBL] [Abstract][Full Text] [Related]
43. Resilience of the resident soil microbiome to organic and inorganic amendment disturbances and to temporary bacterial invasion. Lourenço KS; Suleiman AKA; Pijl A; van Veen JA; Cantarella H; Kuramae EE Microbiome; 2018 Aug; 6(1):142. PubMed ID: 30103819 [TBL] [Abstract][Full Text] [Related]
44. Sugarcane growth and nutrition levels are differentially affected by the application of PGPR and cane waste. Santos RM; Kandasamy S; Rigobelo EC Microbiologyopen; 2018 Dec; 7(6):e00617. PubMed ID: 29653035 [TBL] [Abstract][Full Text] [Related]
45. Strategies to mitigate the nitrous oxide emissions from nitrogen fertilizer applied with organic fertilizers in sugarcane. Lourenço KS; Rossetto R; Vitti AC; Montezano ZF; Soares JR; Sousa RM; do Carmo JB; Kuramae EE; Cantarella H Sci Total Environ; 2019 Feb; 650(Pt 1):1476-1486. PubMed ID: 30308834 [TBL] [Abstract][Full Text] [Related]
46. Enhancing biogas production from vinasse through optimizing hydraulic retention time and added load using the response surface methodology. El Bari H; Habchi S Heliyon; 2024 Oct; 10(19):e38967. PubMed ID: 39430513 [TBL] [Abstract][Full Text] [Related]
47. Sugarcane vinasse extreme thermophilic digestion: a glimpse on biogas free management. Niz MYK; Fuentes L; Etchebehere C; Zaiat M Bioprocess Biosyst Eng; 2021 Jul; 44(7):1405-1421. PubMed ID: 33721084 [TBL] [Abstract][Full Text] [Related]
48. Haldane-Andrews substrate inhibition kinetics for pilot scale thermophilic anaerobic degradation of sugarcane vinasse. Chai A; Wong YS; Ong SA; Aminah Lutpi N; Sam ST; Kee WC; Ng HH Bioresour Technol; 2021 Sep; 336():125319. PubMed ID: 34049168 [TBL] [Abstract][Full Text] [Related]
49. Viability of Using Glycerin as a Co-substrate in Anaerobic Digestion of Sugarcane Stillage (Vinasse): Effect of Diversified Operational Strategies. Lovato G; Batista LPP; Preite MB; Yamashiro JN; Becker ALS; Vidal MFG; Pezini N; Albanez R; Ratusznei SM; Rodrigues JAD Appl Biochem Biotechnol; 2019 Jul; 188(3):720-740. PubMed ID: 30680702 [TBL] [Abstract][Full Text] [Related]
50. Energetic, economic and environmental assessment for the anaerobic digestion of pretreated and codigested press mud. López González LM; Pereda Reyes I; Pedraza Garciga J; Barrera EL; Romero Romero O Waste Manag; 2020 Feb; 102():249-259. PubMed ID: 31693969 [TBL] [Abstract][Full Text] [Related]
51. Potassium adsorption in soil cultivated with sugarcane. Freitas JMAS; Netto AM; Corrêa MM; Xavier BTL; Assis FX An Acad Bras Cienc; 2018; 90(1):541-555. PubMed ID: 29044317 [TBL] [Abstract][Full Text] [Related]
52. Cane Vinasses Contain Bioactive Concentrations of Auxin and Abscisic Acid in Their Composition. Zamarreño AM; Valduga G; Garcia-Mina JM Int J Mol Sci; 2022 Sep; 23(17):. PubMed ID: 36077383 [TBL] [Abstract][Full Text] [Related]
53. Bioconversion of Sugarcane Vinasse into High-Added Value Products and Energy. Naspolini BF; Machado ACO; Cravo Junior WB; Freire DMG; Cammarota MC Biomed Res Int; 2017; 2017():8986165. PubMed ID: 29250551 [TBL] [Abstract][Full Text] [Related]
54. Anaerobic co-digestion of sugarcane press mud with vinasse on methane yield. López González LM; Pereda Reyes I; Romero Romero O Waste Manag; 2017 Oct; 68():139-145. PubMed ID: 28733111 [TBL] [Abstract][Full Text] [Related]
55. Global direct nitrous oxide emissions from the bioenergy crop sugarcane (Saccharum spp. inter-specific hybrids). Yang L; Deng Y; Wang X; Zhang W; Shi X; Chen X; Lakshmanan P; Zhang F Sci Total Environ; 2021 Jan; 752():141795. PubMed ID: 32892043 [TBL] [Abstract][Full Text] [Related]
56. Toxicity evaluation of leached of sugarcane vinasse: Histopathology and immunostaining of cellular stress protein. Coelho MPM; Correia JE; Vasques LI; Marcato ACC; Guedes TA; Soto MA; Basso JB; Kiang C; Fontanetti CS Ecotoxicol Environ Saf; 2018 Dec; 165():367-375. PubMed ID: 30216895 [TBL] [Abstract][Full Text] [Related]
57. One versus two-stage codigestion of sugarcane vinasse and glycerol: Assessing combinations at mesophilic and (hyper) thermophilic conditions. Menezes CA; Almeida PS; Camargo FP; Delforno TP; Oliveira VM; Sakamoto IK; Varesche MBA; Silva EL Sci Total Environ; 2023 Dec; 904():166294. PubMed ID: 37586502 [TBL] [Abstract][Full Text] [Related]
58. Validation by Molecular Dynamics of the Major Components of Sugarcane Vinasse, On a Surface of Calcium Carbonate (Calcite). Rojas Álvarez OE; Nicolás Vázquez MI; Oñate-Garzón J; Arango CA Molecules; 2021 Apr; 26(8):. PubMed ID: 33919518 [TBL] [Abstract][Full Text] [Related]
59. Soil quality parameters vis-a-vis growth and yield attributes of sugarcane as influenced by integration of microbial consortium with NPK fertilizers. Shukla SK; Sharma L; Jaiswal VP; Pathak AD; Tiwari R; Awasthi SK; Gaur A Sci Rep; 2020 Nov; 10(1):19180. PubMed ID: 33154431 [TBL] [Abstract][Full Text] [Related]
60. Enhancing biogas production from vinasse in sugarcane biorefineries: Effects of urea and trace elements supplementation on process performance and stability. Janke L; Leite AF; Batista K; Silva W; Nikolausz M; Nelles M; Stinner W Bioresour Technol; 2016 Oct; 217():10-20. PubMed ID: 26873284 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]