BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

269 related articles for article (PubMed ID: 33077484)

  • 21. Long-chain acyl-CoA synthetase 4 participates in the formation of highly unsaturated fatty acid-containing phospholipids in murine macrophages.
    Kuwata H; Nakatani E; Shimbara-Matsubayashi S; Ishikawa F; Shibanuma M; Sasaki Y; Yoda E; Nakatani Y; Hara S
    Biochim Biophys Acta Mol Cell Biol Lipids; 2019 Nov; 1864(11):1606-1618. PubMed ID: 31376475
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Role of acyl-CoA synthetase ACSL4 in arachidonic acid metabolism.
    Kuwata H; Hara S
    Prostaglandins Other Lipid Mediat; 2019 Oct; 144():106363. PubMed ID: 31306767
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Long-chain acyl-CoA synthetase 4-mediated mitochondrial fatty acid metabolism and dendritic cell antigen presentation.
    Li Y; Fu W; Xiang J; Ren Y; Li Y; Zhou M; Yu J; Luo Z; Liu E; Fu Z; Liu B; Ding F
    Inflamm Res; 2024 May; 73(5):819-839. PubMed ID: 38472395
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Activation of LXR increases acyl-CoA synthetase activity through direct regulation of ACSL3 in human placental trophoblast cells.
    Weedon-Fekjaer MS; Dalen KT; Solaas K; Staff AC; Duttaroy AK; Nebb HI
    J Lipid Res; 2010 Jul; 51(7):1886-96. PubMed ID: 20219900
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Changes in androgen receptor nongenotropic signaling correlate with transition of LNCaP cells to androgen independence.
    Unni E; Sun S; Nan B; McPhaul MJ; Cheskis B; Mancini MA; Marcelli M
    Cancer Res; 2004 Oct; 64(19):7156-68. PubMed ID: 15466214
    [TBL] [Abstract][Full Text] [Related]  

  • 26. ACSL4 reprograms fatty acid metabolism in hepatocellular carcinoma via c-Myc/SREBP1 pathway.
    Chen J; Ding C; Chen Y; Hu W; Yu C; Peng C; Feng X; Cheng Q; Wu W; Lu Y; Xie H; Zhou L; Wu J; Zheng S
    Cancer Lett; 2021 Apr; 502():154-165. PubMed ID: 33340617
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Transcriptional activation of hepatic ACSL3 and ACSL5 by oncostatin m reduces hypertriglyceridemia through enhanced beta-oxidation.
    Zhou Y; Abidi P; Kim A; Chen W; Huang TT; Kraemer FB; Liu J
    Arterioscler Thromb Vasc Biol; 2007 Oct; 27(10):2198-205. PubMed ID: 17761945
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The N-terminal region of acyl-CoA synthetase 3 is essential for both the localization on lipid droplets and the function in fatty acid uptake.
    Poppelreuther M; Rudolph B; Du C; Großmann R; Becker M; Thiele C; Ehehalt R; Füllekrug J
    J Lipid Res; 2012 May; 53(5):888-900. PubMed ID: 22357706
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Identification of ACSL4 as a biomarker and contributor of ferroptosis.
    Yuan H; Li X; Zhang X; Kang R; Tang D
    Biochem Biophys Res Commun; 2016 Sep; 478(3):1338-43. PubMed ID: 27565726
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Functional interaction between acyl-CoA synthetase 4, lipooxygenases and cyclooxygenase-2 in the aggressive phenotype of breast cancer cells.
    Maloberti PM; Duarte AB; Orlando UD; Pasqualini ME; Solano AR; López-Otín C; Podestá EJ
    PLoS One; 2010 Nov; 5(11):e15540. PubMed ID: 21085606
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Inhibition of long-chain acyl-CoA synthetase 4 facilitates production of 5, 11-dihydroxyeicosatetraenoic acid via the cyclooxygenase-2 pathway.
    Kuwata H; Hara S
    Biochem Biophys Res Commun; 2015 Sep; 465(3):528-33. PubMed ID: 26282205
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Acyl-CoA synthetase long-chain 3-mediated fatty acid oxidation is required for TGFβ1-induced epithelial-mesenchymal transition and metastasis of colorectal carcinoma.
    Quan J; Cheng C; Tan Y; Jiang N; Liao C; Liao W; Cao Y; Luo X
    Int J Biol Sci; 2022; 18(6):2484-2496. PubMed ID: 35414781
    [TBL] [Abstract][Full Text] [Related]  

  • 33. dAcsl, the Drosophila ortholog of acyl-CoA synthetase long-chain family member 3 and 4, inhibits synapse growth by attenuating bone morphogenetic protein signaling via endocytic recycling.
    Liu Z; Huang Y; Hu W; Huang S; Wang Q; Han J; Zhang YQ
    J Neurosci; 2014 Feb; 34(8):2785-96. PubMed ID: 24553921
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Distinct transcriptional regulation of long-chain acyl-CoA synthetase isoforms and cytosolic thioesterase 1 in the rodent heart by fatty acids and insulin.
    Durgan DJ; Smith JK; Hotze MA; Egbejimi O; Cuthbert KD; Zaha VG; Dyck JR; Abel ED; Young ME
    Am J Physiol Heart Circ Physiol; 2006 Jun; 290(6):H2480-97. PubMed ID: 16428347
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Fatty Acid Oxidation Mediated by Acyl-CoA Synthetase Long Chain 3 Is Required for Mutant KRAS Lung Tumorigenesis.
    Padanad MS; Konstantinidou G; Venkateswaran N; Melegari M; Rindhe S; Mitsche M; Yang C; Batten K; Huffman KE; Liu J; Tang X; Rodriguez-Canales J; Kalhor N; Shay JW; Minna JD; McDonald J; Wistuba II; DeBerardinis RJ; Scaglioni PP
    Cell Rep; 2016 Aug; 16(6):1614-1628. PubMed ID: 27477280
    [TBL] [Abstract][Full Text] [Related]  

  • 36. ACSL family: The regulatory mechanisms and therapeutic implications in cancer.
    Quan J; Bode AM; Luo X
    Eur J Pharmacol; 2021 Oct; 909():174397. PubMed ID: 34332918
    [TBL] [Abstract][Full Text] [Related]  

  • 37. SREBF1 Activity Is Regulated by an AR/mTOR Nuclear Axis in Prostate Cancer.
    Audet-Walsh É; Vernier M; Yee T; Laflamme C; Li S; Chen Y; Giguère V
    Mol Cancer Res; 2018 Sep; 16(9):1396-1405. PubMed ID: 29784665
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Acyl-CoA synthetase-4, a new regulator of mTOR and a potential therapeutic target for enhanced estrogen receptor function in receptor-positive and -negative breast cancer.
    Orlando UD; Castillo AF; Dattilo MA; Solano AR; Maloberti PM; Podesta EJ
    Oncotarget; 2015 Dec; 6(40):42632-50. PubMed ID: 26536660
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Analysis on the Substrate Specificity of Recombinant Human Acyl-CoA Synthetase ACSL4 Variants.
    Shimbara-Matsubayashi S; Kuwata H; Tanaka N; Kato M; Hara S
    Biol Pharm Bull; 2019; 42(5):850-855. PubMed ID: 31061331
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Integrative Genomic Analysis of OCT1 Reveals Coordinated Regulation of Androgen Receptor in Advanced Prostate Cancer.
    Takayama KI; Suzuki Y; Yamamoto S; Obinata D; Takahashi S; Inoue S
    Endocrinology; 2019 Feb; 160(2):463-472. PubMed ID: 30649323
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.