These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
216 related articles for article (PubMed ID: 33077588)
1. Changing nutrient cycling in Lake Baikal, the world's oldest lake. Swann GEA; Panizzo VN; Piccolroaz S; Pashley V; Horstwood MSA; Roberts S; Vologina E; Piotrowska N; Sturm M; Zhdanov A; Granin N; Norman C; McGowan S; Mackay AW Proc Natl Acad Sci U S A; 2020 Nov; 117(44):27211-27217. PubMed ID: 33077588 [TBL] [Abstract][Full Text] [Related]
2. Diatom evidence of 20th century ecosystem change in Lake Baikal, Siberia. Roberts SL; Swann GEA; McGowan S; Panizzo VN; Vologina EG; Sturm M; Mackay AW PLoS One; 2018; 13(12):e0208765. PubMed ID: 30566423 [TBL] [Abstract][Full Text] [Related]
3. Mercury loading within the Selenga River basin and Lake Baikal, Siberia. Roberts S; Adams JK; Mackay AW; Swann GEA; McGowan S; Rose NL; Panizzo V; Yang H; Vologina E; Sturm M; Shchetnikov AA Environ Pollut; 2020 Apr; 259():113814. PubMed ID: 32023784 [TBL] [Abstract][Full Text] [Related]
4. Mitochondrial and nuclear DNA phylogeography of Thymallus spp (grayling) provides evidence of ice-age mediated environmental perturbations in the world's oldest body of fresh water, Lake Baikal. Koskinen MT; Knizhin I; Primmer CR; Schlötterer C; Weiss S Mol Ecol; 2002 Dec; 11(12):2599-611. PubMed ID: 12453243 [TBL] [Abstract][Full Text] [Related]
5. Ecosystem regime change inferred from the distribution of trace metals in Lake Erie sediments. Yuan F; Depew R; Soltis-Muth C Sci Rep; 2014 Dec; 4():7265. PubMed ID: 25434300 [TBL] [Abstract][Full Text] [Related]
6. Influence of long-distance climate teleconnection on seasonality of water temperature in the world's largest lake--Lake Baikal, Siberia. Katz SL; Hampton SE; Izmest'eva LR; Moore MV PLoS One; 2011 Feb; 6(2):e14688. PubMed ID: 21359207 [TBL] [Abstract][Full Text] [Related]
7. The rise and fall of plankton: long-term changes in the vertical distribution of algae and grazers in Lake Baikal, Siberia. Hampton SE; Gray DK; Izmest'eva LR; Moore MV; Ozersky T PLoS One; 2014; 9(2):e88920. PubMed ID: 24586441 [TBL] [Abstract][Full Text] [Related]
8. Tectonics of the baikal rift deduced from volcanism and sedimentation: a review oriented to the Baikal and Hovsgol lake systems. Ivanov AV; Demonterova EI Prog Mol Subcell Biol; 2009; 47():27-54. PubMed ID: 19198772 [TBL] [Abstract][Full Text] [Related]
9. Hydrochemistry dynamics in remote mountain lakes and its relation to catchment and atmospheric features: the case study of Sabocos Tarn, Pyrenees. Santolaria Z; Arruebo T; Urieta JS; Lanaja FJ; Pardo A; Matesanz J; Rodriguez-Casals C Environ Sci Pollut Res Int; 2015 Jan; 22(1):231-47. PubMed ID: 25060309 [TBL] [Abstract][Full Text] [Related]
10. Climate and land-use as the main drivers of recent environmental change in a mid-altitude mountain lake, Romanian Carpathians. Haliuc A; Buczkó K; Hutchinson SM; Ács É; Magyari EK; Korponai J; Begy RC; Vasilache D; Zak M; Veres D PLoS One; 2020; 15(10):e0239209. PubMed ID: 33002077 [TBL] [Abstract][Full Text] [Related]
11. Interactive effects of climate-atmospheric cycling on aquatic communities and ecosystem shifts in mountain lakes of southeastern Tibetan Plateau. Wang Q; Wang R; Yang X; Anderson NJ; Kong L Sci Total Environ; 2024 Mar; 914():169825. PubMed ID: 38199353 [TBL] [Abstract][Full Text] [Related]
12. Catchment-mediated atmospheric nitrogen deposition drives ecological change in two alpine lakes in SE Tibet. Hu Z; Anderson NJ; Yang X; McGowan S Glob Chang Biol; 2014 May; 20(5):1614-28. PubMed ID: 24132882 [TBL] [Abstract][Full Text] [Related]
13. Anthropogenic climate change has altered lake state in the Sierra Nevada (California, USA). Streib LC; Stone JR; Lyon EC; Quang HH; Yeager KM; Zimmerman SRH; McGlue MM Glob Chang Biol; 2021 Dec; 27(23):6059-6070. PubMed ID: 34495571 [TBL] [Abstract][Full Text] [Related]
14. Quantifying recent ecological changes in remote lakes of North America and Greenland using sediment diatom assemblages. Hobbs WO; Telford RJ; Birks HJ; Saros JE; Hazewinkel RR; Perren BB; Saulnier-Talbot E; Wolfe AP PLoS One; 2010 Apr; 5(4):e10026. PubMed ID: 20368811 [TBL] [Abstract][Full Text] [Related]
15. Lake sediment records of persistent organic pollutants and polycyclic aromatic hydrocarbons in southern Siberia mirror the changing fortunes of the Russian economy over the past 70 years. Adams JK; Martins CC; Rose NL; Shchetnikov AA; Mackay AW Environ Pollut; 2018 Nov; 242(Pt A):528-538. PubMed ID: 30005265 [TBL] [Abstract][Full Text] [Related]
16. Arctic warming drives striking twenty-first century ecosystem shifts in Great Slave Lake (Subarctic Canada), North America's deepest lake. Rühland KM; Evans M; Smol JP Proc Biol Sci; 2023 Sep; 290(2007):20231252. PubMed ID: 37727085 [TBL] [Abstract][Full Text] [Related]
17. Genomes of Novel Microbial Lineages Assembled from the Sub-Ice Waters of Lake Baikal. Cabello-Yeves PJ; Zemskaya TI; Rosselli R; Coutinho FH; Zakharenko AS; Blinov VV; Rodriguez-Valera F Appl Environ Microbiol; 2018 Jan; 84(1):. PubMed ID: 29079621 [TBL] [Abstract][Full Text] [Related]
18. Trends in historical mercury deposition inferred from lake sediment cores across a climate gradient in the Canadian High Arctic. Korosi JB; Griffiths K; Smol JP; Blais JM Environ Pollut; 2018 Oct; 241():459-467. PubMed ID: 29870948 [TBL] [Abstract][Full Text] [Related]
19. Light limitation of nutrient-poor lake ecosystems. Karlsson J; Byström P; Ask J; Ask P; Persson L; Jansson M Nature; 2009 Jul; 460(7254):506-9. PubMed ID: 19626113 [TBL] [Abstract][Full Text] [Related]
20. The legacy of mercury cycling from mining sources in an aquatic ecosystem: from ore to organism. Suchanek TH; Richerson PJ; Zierenberg RA; Eagles-Smith CA; Slotton DG; Harner EJ; Osleger DA; Anderson DW; Cech JJ; Schladow SG; Colwell AE; Mount JF; King PS; Adam DP; McElroy KJ Ecol Appl; 2008 Dec; 18(8 Suppl):A12-28. PubMed ID: 19475916 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]