These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

179 related articles for article (PubMed ID: 33077752)

  • 1. Efficient trajectory optimization for curved running using a 3D musculoskeletal model with implicit dynamics.
    Nitschke M; Dorschky E; Heinrich D; Schlarb H; Eskofier BM; Koelewijn AD; van den Bogert AJ
    Sci Rep; 2020 Oct; 10(1):17655. PubMed ID: 33077752
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Change the direction: 3D optimal control simulation by directly tracking marker and ground reaction force data.
    Nitschke M; Marzilger R; Leyendecker S; Eskofier BM; Koelewijn AD
    PeerJ; 2023; 11():e14852. PubMed ID: 36778146
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Estimating 3D kinematics and kinetics from virtual inertial sensor data through musculoskeletal movement simulations.
    Nitschke M; Dorschky E; Leyendecker S; Eskofier BM; Koelewijn AD
    Front Bioeng Biotechnol; 2024; 12():1285845. PubMed ID: 38628437
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Three-dimensional data-tracking dynamic optimization simulations of human locomotion generated by direct collocation.
    Lin YC; Pandy MG
    J Biomech; 2017 Jul; 59():1-8. PubMed ID: 28583674
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Predictive Simulations of Neuromuscular Coordination and Joint-Contact Loading in Human Gait.
    Lin YC; Walter JP; Pandy MG
    Ann Biomed Eng; 2018 Aug; 46(8):1216-1227. PubMed ID: 29671152
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Direct Methods for Predicting Movement Biomechanics Based Upon Optimal Control Theory with Implementation in OpenSim.
    Porsa S; Lin YC; Pandy MG
    Ann Biomed Eng; 2016 Aug; 44(8):2542-2557. PubMed ID: 26715209
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Hybrid neuromusculoskeletal modeling to best track joint moments using a balance between muscle excitations derived from electromyograms and optimization.
    Sartori M; Farina D; Lloyd DG
    J Biomech; 2014 Nov; 47(15):3613-21. PubMed ID: 25458151
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Optimum trajectory learning in musculoskeletal systems with model predictive control and deep reinforcement learning.
    Denizdurduran B; Markram H; Gewaltig MO
    Biol Cybern; 2022 Dec; 116(5-6):711-726. PubMed ID: 35951117
    [TBL] [Abstract][Full Text] [Related]  

  • 9. OpenSim Moco: Musculoskeletal optimal control.
    Dembia CL; Bianco NA; Falisse A; Hicks JL; Delp SL
    PLoS Comput Biol; 2020 Dec; 16(12):e1008493. PubMed ID: 33370252
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Implicit methods for efficient musculoskeletal simulation and optimal control.
    van den Bogert AJ; Blana D; Heinrich D
    Procedia IUTAM; 2011 Jan; 2(2011):297-316. PubMed ID: 22102983
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Full-Body Musculoskeletal Model for Muscle-Driven Simulation of Human Gait.
    Rajagopal A; Dembia CL; DeMers MS; Delp DD; Hicks JL; Delp SL
    IEEE Trans Biomed Eng; 2016 Oct; 63(10):2068-79. PubMed ID: 27392337
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Muscular strategy shift in human running: dependence of running speed on hip and ankle muscle performance.
    Dorn TW; Schache AG; Pandy MG
    J Exp Biol; 2012 Jun; 215(Pt 11):1944-56. PubMed ID: 22573774
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Prediction of ground reaction forces and moments during various activities of daily living.
    Fluit R; Andersen MS; Kolk S; Verdonschot N; Koopman HF
    J Biomech; 2014 Jul; 47(10):2321-9. PubMed ID: 24835471
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ground reaction forces and lower extremity kinematics when running with suppressed arm swing.
    Miller RH; Caldwell GE; Van Emmerik RE; Umberger BR; Hamill J
    J Biomech Eng; 2009 Dec; 131(12):124502. PubMed ID: 20524736
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A rolling constraint reproduces ground reaction forces and moments in dynamic simulations of walking, running, and crouch gait.
    Hamner SR; Seth A; Steele KM; Delp SL
    J Biomech; 2013 Jun; 46(10):1772-6. PubMed ID: 23702045
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Are arm trajectories planned in kinematic or dynamic coordinates? An adaptation study.
    Wolpert DM; Ghahramani Z; Jordan MI
    Exp Brain Res; 1995; 103(3):460-70. PubMed ID: 7789452
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A musculoskeletal shoulder model based on pseudo-inverse and null-space optimization.
    Terrier A; Aeberhard M; Michellod Y; Mullhaupt P; Gillet D; Farron A; Pioletti DP
    Med Eng Phys; 2010 Nov; 32(9):1050-6. PubMed ID: 20709589
    [TBL] [Abstract][Full Text] [Related]  

  • 18. An approximate stochastic optimal control framework to simulate nonlinear neuro-musculoskeletal models in the presence of noise.
    Van Wouwe T; Ting LH; De Groote F
    PLoS Comput Biol; 2022 Jun; 18(6):e1009338. PubMed ID: 35675227
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A simulation framework to determine optimal strength training and musculoskeletal geometry for sprinting and distance running.
    Van Wouwe T; Hicks J; Delp S; Liu KC
    PLoS Comput Biol; 2024 Feb; 20(2):e1011410. PubMed ID: 38394308
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Estimation of muscle response using three-dimensional musculoskeletal models before impact situation: a simulation study.
    Bae TS; Loan P; Choi K; Hong D; Mun MS
    J Biomech Eng; 2010 Dec; 132(12):121011. PubMed ID: 21142325
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.