These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

170 related articles for article (PubMed ID: 33077752)

  • 21. Simple EMG-driven musculoskeletal model enables consistent control performance during path tracing tasks.
    Crouch D; He Huang
    Annu Int Conf IEEE Eng Med Biol Soc; 2016 Aug; 2016():1-4. PubMed ID: 28268266
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Muscle inertial contributions to ankle kinetics during the swing phase of running.
    Verheul J; Sueda S; Yeo SH
    J Biomech; 2023 Jan; 147():111455. PubMed ID: 36701960
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Which data should be tracked in forward-dynamic optimisation to best predict muscle forces in a pathological co-contraction case?
    Bélaise C; Michaud B; Dal Maso F; Mombaur K; Begon M
    J Biomech; 2018 Feb; 68():99-106. PubMed ID: 29325902
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Increased medial longitudinal arch mobility, lower extremity kinematics, and ground reaction forces in high-arched runners.
    Williams DS; Tierney RN; Butler RJ
    J Athl Train; 2014; 49(3):290-6. PubMed ID: 24840580
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Development of a finite element musculoskeletal model with the ability to predict contractions of three-dimensional muscles.
    Li J; Lu Y; Miller SC; Jin Z; Hua X
    J Biomech; 2019 Sep; 94():230-234. PubMed ID: 31421809
    [TBL] [Abstract][Full Text] [Related]  

  • 26. A biomechanical evaluation of firefighters' musculoskeletal loads when carrying self-contained breathing apparatus in walking and running.
    Wang S; Feng C; Chen X; Shan M; Niu W
    J Safety Res; 2023 Dec; 87():1-14. PubMed ID: 38081685
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Generating optimal control simulations of musculoskeletal movement using OpenSim and MATLAB.
    Lee LF; Umberger BR
    PeerJ; 2016; 4():e1638. PubMed ID: 26835184
    [TBL] [Abstract][Full Text] [Related]  

  • 28. An improved inverse dynamics formulation for estimation of external and internal loads during human sagittal plane movements.
    Blajer W; Dziewiecki K; Mazur Z
    Comput Methods Biomech Biomed Engin; 2015; 18(4):362-75. PubMed ID: 23758087
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Integrating modelling and experiments to assess dynamic musculoskeletal function in humans.
    Fernandez JW; Pandy MG
    Exp Physiol; 2006 Mar; 91(2):371-82. PubMed ID: 16407475
    [TBL] [Abstract][Full Text] [Related]  

  • 30. A superellipsoid-plane model for simulating foot-ground contact during human gait.
    Lopes DS; Neptune RR; Ambrósio JA; Silva MT
    Comput Methods Biomech Biomed Engin; 2016; 19(9):954-63. PubMed ID: 26325481
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Dynamic optimization of human walking.
    Anderson FC; Pandy MG
    J Biomech Eng; 2001 Oct; 123(5):381-90. PubMed ID: 11601721
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Curved Approach in High Jump Induces Greater Jumping Height without Greater Joint Kinetic Exertions than Straight Approach.
    Sado N; Yoshioka S; Fukashiro S
    Med Sci Sports Exerc; 2022 Jan; 54(1):120-128. PubMed ID: 34347669
    [TBL] [Abstract][Full Text] [Related]  

  • 33. AddBiomechanics: Automating model scaling, inverse kinematics, and inverse dynamics from human motion data through sequential optimization.
    Werling K; Bianco NA; Raitor M; Stingel J; Hicks JL; Collins SH; Delp SL; Liu CK
    PLoS One; 2023; 18(11):e0295152. PubMed ID: 38033114
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Evaluation of Direct Collocation Optimal Control Problem Formulations for Solving the Muscle Redundancy Problem.
    De Groote F; Kinney AL; Rao AV; Fregly BJ
    Ann Biomed Eng; 2016 Oct; 44(10):2922-2936. PubMed ID: 27001399
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Effects of body movement on yaw motion in bipedal running lizard by dynamic simulation.
    Kim J; Kim H; Park J; Kim HS; Seo T
    PLoS One; 2020; 15(12):e0243798. PubMed ID: 33382751
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Image-based musculoskeletal modeling: applications, advances, and future opportunities.
    Blemker SS; Asakawa DS; Gold GE; Delp SL
    J Magn Reson Imaging; 2007 Feb; 25(2):441-51. PubMed ID: 17260405
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Residual Elimination Algorithm Enhancements to Improve Foot Motion Tracking During Forward Dynamic Simulations of Gait.
    Jackson JN; Hass CJ; Fregly BJ
    J Biomech Eng; 2015 Nov; 137(11):111002. PubMed ID: 26299394
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Knee joint loading during lineman-specific movements in American football players.
    Lambach RL; Young JW; Flanigan DC; Siston RA; Chaudhari AM
    J Appl Biomech; 2015 Jun; 31(3):142-8. PubMed ID: 25536366
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Optimal estimation of dynamically consistent kinematics and kinetics for forward dynamic simulation of gait.
    Remy CD; Thelen DG
    J Biomech Eng; 2009 Mar; 131(3):031005. PubMed ID: 19154064
    [TBL] [Abstract][Full Text] [Related]  

  • 40. An EMG-driven musculoskeletal model to estimate muscle forces and knee joint moments in vivo.
    Lloyd DG; Besier TF
    J Biomech; 2003 Jun; 36(6):765-76. PubMed ID: 12742444
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.