These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

205 related articles for article (PubMed ID: 3307781)

  • 21. Polyisoprenoid amphiphilic compounds as inhibitors of squalene synthesis and other microsomal enzymes.
    Bertolino A; Altman LJ; Vasak J; Rilling HC
    Biochim Biophys Acta; 1978 Jul; 530(1):17-23. PubMed ID: 210830
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Squalene epoxidase and oxidosqualene lanosterol-cyclase activities in cholesterogenic and non-cholesterogenic tissues.
    Astruc M; Tabacik C; Descomps B; de Paulet AC
    Biochim Biophys Acta; 1977 Apr; 487(1):204-11. PubMed ID: 857899
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Development of a radiometric spot-wash assay for squalene synthase.
    Tait RM
    Anal Biochem; 1992 Jun; 203(2):310-6. PubMed ID: 1416027
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Single amino acid exchanges in FAD-binding domains of squalene epoxidase of Saccharomyces cerevisiae lead to either loss of functionality or terbinafine sensitivity.
    Ruckenstuhl C; Eidenberger A; Lang S; Turnowsky F
    Biochem Soc Trans; 2005 Nov; 33(Pt 5):1197-201. PubMed ID: 16246080
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Epoxidation of 2,3-oxidosqualene to 2,3;22,23-squalene dioxide by squalene epoxidase.
    Bai M; Xiao XY; Prestwich GD
    Biochem Biophys Res Commun; 1992 May; 185(1):323-9. PubMed ID: 1599468
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Dual localization of squalene epoxidase, Erg1p, in yeast reflects a relationship between the endoplasmic reticulum and lipid particles.
    Leber R; Landl K; Zinser E; Ahorn H; Spök A; Kohlwein SD; Turnowsky F; Daum G
    Mol Biol Cell; 1998 Feb; 9(2):375-86. PubMed ID: 9450962
    [TBL] [Abstract][Full Text] [Related]  

  • 27. A squalene synthase protein degradation method for improved sesquiterpene production in Saccharomyces cerevisiae.
    Peng B; Plan MR; Chrysanthopoulos P; Hodson MP; Nielsen LK; Vickers CE
    Metab Eng; 2017 Jan; 39():209-219. PubMed ID: 27939849
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Biochemical characterization of terbinafine-resistant Trichophyton rubrum isolates.
    Favre B; Ghannoum MA; Ryder NS
    Med Mycol; 2004 Dec; 42(6):525-9. PubMed ID: 15682641
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Squalene synthetase.
    Popják G; Agnew WS
    Mol Cell Biochem; 1979 Oct; 27(2):97-116. PubMed ID: 41173
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Role of supernatant protein factor and anionic phospholipid in squalene uptake and conversion by microsomes.
    Chin J; Bloch K
    J Biol Chem; 1984 Oct; 259(19):11735-8. PubMed ID: 6480582
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Enhancement of farnesyl diphosphate pool as direct precursor of sesquiterpenes through metabolic engineering of the mevalonate pathway in Saccharomyces cerevisiae.
    Asadollahi MA; Maury J; Schalk M; Clark A; Nielsen J
    Biotechnol Bioeng; 2010 May; 106(1):86-96. PubMed ID: 20091767
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Purification and partial characterization of squalene epoxidase from rat liver microsomes.
    Ono T; Nakazono K; Kosaka H
    Biochim Biophys Acta; 1982 Dec; 709(1):84-90. PubMed ID: 6817796
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Expression, purification, and characterization of the human squalene synthase: use of yeast and baculoviral systems.
    Soltis DA; McMahon G; Caplan SL; Dudas DA; Chamberlin HA; Vattay A; Dottavio D; Rucker ML; Engstrom RG; Cornell-Kennon SA
    Arch Biochem Biophys; 1995 Feb; 316(2):713-23. PubMed ID: 7864626
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Redirection of flux through the FPP branch-point in Saccharomyces cerevisiae by down-regulating squalene synthase.
    Paradise EM; Kirby J; Chan R; Keasling JD
    Biotechnol Bioeng; 2008 Jun; 100(2):371-8. PubMed ID: 18175359
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Detection of farnesyl diphosphate accumulation in yeast ERG9 mutants.
    Song L
    Anal Biochem; 2003 Jun; 317(2):180-5. PubMed ID: 12758256
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Structure-function correlations of two highly conserved motifs in Saccharomyces cerevisiae squalene epoxidase.
    Ruckenstuhl C; Poschenel A; Possert R; Baral PK; Gruber K; Turnowsky F
    Antimicrob Agents Chemother; 2008 Apr; 52(4):1496-9. PubMed ID: 18212112
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Interactions of supernatant protein factor with components of the microsomal squalene epoxidase system. Binding of supernatant protein factor to anionic phospholipids.
    Caras IW; Friedlander EJ; Bloch K
    J Biol Chem; 1980 Apr; 255(8):3575-80. PubMed ID: 7364757
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Effect of detergents on sterol synthesis in a cell-free system of yeast.
    Hata S; Nishino T; Ariga N; Katsuki H
    J Lipid Res; 1982 Aug; 23(6):803-10. PubMed ID: 6752317
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Detailed mechanism of squalene epoxidase inhibition by terbinafine.
    Nowosielski M; Hoffmann M; Wyrwicz LS; Stepniak P; Plewczynski DM; Lazniewski M; Ginalski K; Rychlewski L
    J Chem Inf Model; 2011 Feb; 51(2):455-62. PubMed ID: 21229992
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Inhibition of fungal and mammalian sterol biosynthesis by 2-aza-2,3-dihydrosqualene.
    Ryder NS; Dupont MC; Frank I
    FEBS Lett; 1986 Aug; 204(2):239-42. PubMed ID: 3525224
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.