These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

293 related articles for article (PubMed ID: 33078810)

  • 21. Wetting on physically patterned solid surfaces: the relevance of molecular dynamics simulations to macroscopic systems.
    Shahraz A; Borhan A; Fichthorn KA
    Langmuir; 2013 Sep; 29(37):11632-9. PubMed ID: 23952673
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Dynamic wetting and spreading and the role of topography.
    McHale G; Newton MI; Shirtcliffe NJ
    J Phys Condens Matter; 2009 Nov; 21(46):464122. PubMed ID: 21715886
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Wetting theory for small droplets on textured solid surfaces.
    Kim D; Pugno NM; Ryu S
    Sci Rep; 2016 Nov; 6():37813. PubMed ID: 27897194
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Stick-Jump (SJ) Evaporation of Strongly Pinned Nanoliter Volume Sessile Water Droplets on Quick Drying, Micropatterned Surfaces.
    Debuisson D; Merlen A; Senez V; Arscott S
    Langmuir; 2016 Mar; 32(11):2679-86. PubMed ID: 26950673
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Pinning-depinning of the contact line during drop evaporation on textured surfaces: A lattice Boltzmann study.
    Jannati K; Rahimian MH; Moradi M
    Phys Rev E; 2020 Sep; 102(3-1):033106. PubMed ID: 33075889
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Wetting phenomena on micro-grooved aluminum surfaces and modeling of the critical droplet size.
    Sommers AD; Jacobi AM
    J Colloid Interface Sci; 2008 Dec; 328(2):402-11. PubMed ID: 18930243
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Evaporation Dynamics of a Sessile Droplet of Binary Mixture Laden with Nanoparticles.
    Katre P; Balusamy S; Banerjee S; Chandrala LD; Sahu KC
    Langmuir; 2021 May; 37(20):6311-6321. PubMed ID: 33983033
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Lattice Boltzmann modeling of contact angle and its hysteresis in two-phase flow with large viscosity difference.
    Liu H; Ju Y; Wang N; Xi G; Zhang Y
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Sep; 92(3):033306. PubMed ID: 26465585
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Color-gradient lattice Boltzmann model for simulating droplet motion with contact-angle hysteresis.
    Ba Y; Liu H; Sun J; Zheng R
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Oct; 88(4):043306. PubMed ID: 24229303
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Pinning of the Contact Line during Evaporation on Heterogeneous Surfaces: Slowdown or Temporary Immobilization? Insights from a Nanoscale Study.
    Zhang J; Müller-Plathe F; Leroy F
    Langmuir; 2015 Jul; 31(27):7544-52. PubMed ID: 26090782
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Identifying Differences and Similarities in Static and Dynamic Contact Angles between Nanoscale and Microscale Textured Surfaces Using Molecular Dynamics Simulations.
    Slovin MR; Shirts MR
    Langmuir; 2015 Jul; 31(29):7980-90. PubMed ID: 26110823
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Nanowall Textured Hydrophobic Surfaces and Liquid Droplet Impact.
    Yilbas BS; Abubakar A; Yakubu M; Al-Qahtani H; Al-Sharafi A
    Materials (Basel); 2022 Feb; 15(5):. PubMed ID: 35268876
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Water on hydroxylated silica surfaces: Work of adhesion, interfacial entropy, and droplet wetting.
    Bistafa C; Surblys D; Kusudo H; Yamaguchi Y
    J Chem Phys; 2021 Aug; 155(6):064703. PubMed ID: 34391348
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Evaporative properties and pinning strength of laser-ablated, hydrophilic sites on lotus-leaf-like, nanostructured surfaces.
    McLauchlin ML; Yang D; Aella P; Garcia AA; Picraux ST; Hayes MA
    Langmuir; 2007 Apr; 23(9):4871-7. PubMed ID: 17381139
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Droplet state and mechanism of contact line movement on laser-textured aluminum alloy surfaces.
    Kuznetsov GV; Feoktistov DV; Orlova EG; Zykov IY; Islamova AG
    J Colloid Interface Sci; 2019 Oct; 553():557-566. PubMed ID: 31238226
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Relationship between Wetting Hysteresis and Contact Time of a Bouncing Droplet on Hydrophobic Surfaces.
    Shen Y; Tao J; Tao H; Chen S; Pan L; Wang T
    ACS Appl Mater Interfaces; 2015 Sep; 7(37):20972-8. PubMed ID: 26331793
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Pinning Forces on the Omniphobic Dry, Liquid-Infused, and Liquid-Attached Surfaces.
    Kazaryan PS; Stamer KS; Kondratenko MS
    Langmuir; 2024 Aug; 40(33):17190-17211. PubMed ID: 39119801
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Wetting of a High-Energy Fiber Surface.
    McHale G; Käb NA; Newton MI; Rowan SM
    J Colloid Interface Sci; 1997 Feb; 186(2):453-61. PubMed ID: 9056375
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Understanding wetting dynamics and stability of aqueous droplet over superhydrophilic spot surrounded by superhydrophobic surface.
    Majhy B; Singh VP; Sen AK
    J Colloid Interface Sci; 2020 Apr; 565():582-591. PubMed ID: 31982724
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Drop impact on natural porous stones.
    Lee JB; Derome D; Carmeliet J
    J Colloid Interface Sci; 2016 May; 469():147-156. PubMed ID: 26874980
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 15.