These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

108 related articles for article (PubMed ID: 33078812)

  • 1. Cholesterol sequestration by xenon nano bubbles leads to lipid raft destabilization.
    Reyes-Figueroa AD; Karttunen M; Ruiz-Suárez JC
    Soft Matter; 2020 Nov; 16(42):9655-9661. PubMed ID: 33078812
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A correlation between lipid domain shape and binary phospholipid mixture composition in free standing bilayers: A two-photon fluorescence microscopy study.
    Bagatolli LA; Gratton E
    Biophys J; 2000 Jul; 79(1):434-47. PubMed ID: 10866969
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Interaction Forces between Lipid Rafts.
    Kurniawan J; Ventrici J; Kittleson G; Kuhl TL
    Langmuir; 2017 Jan; 33(1):382-387. PubMed ID: 28001077
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Quantitative Characterization of Cholesterol Partitioning between Binary Bilayers.
    Park S; Im W
    J Chem Theory Comput; 2018 Jun; 14(6):2829-2833. PubMed ID: 29733641
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Nano-mechanical characterization of asymmetric DLPC/DSPC supported lipid bilayers.
    Kamble S; Patil S; Appala VRM
    Chem Phys Lipids; 2021 Jan; 234():105007. PubMed ID: 33160952
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Sphingomyelin chain length influences the distribution of GPI-anchored proteins in rafts in supported lipid bilayers.
    Garner AE; Smith DA; Hooper NM
    Mol Membr Biol; 2007; 24(3):233-42. PubMed ID: 17520480
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Biocompatible and optically stable hydrophobic fluorescent carbon dots for isolation and imaging of lipid rafts in model membrane.
    Chatterjee A; Ruturaj ; Chakraborty MP; Nandi S; Purkayastha P
    Anal Bioanal Chem; 2022 Aug; 414(20):6055-6067. PubMed ID: 35697813
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fluorescent probe partitioning in giant unilamellar vesicles of 'lipid raft' mixtures.
    Juhasz J; Davis JH; Sharom FJ
    Biochem J; 2010 Sep; 430(3):415-23. PubMed ID: 20642452
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cholesterol dynamics in membranes of raft composition: a molecular point of view from 2H and 31P solid-state NMR.
    Aussenac F; Tavares M; Dufourc EJ
    Biochemistry; 2003 Feb; 42(6):1383-90. PubMed ID: 12578350
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Formation of lipid raft nanodomains in homogeneous ternary lipid mixture of POPC/DPSM/cholesterol: Theoretical insights.
    Ho TH; Nguyen TT; Huynh LK
    Biochim Biophys Acta Biomembr; 2022 Nov; 1864(11):184027. PubMed ID: 35995208
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Docosahexaenoic acid regulates the formation of lipid rafts: A unified view from experiment and simulation.
    Wassall SR; Leng X; Canner SW; Pennington ER; Kinnun JJ; Cavazos AT; Dadoo S; Johnson D; Heberle FA; Katsaras J; Shaikh SR
    Biochim Biophys Acta Biomembr; 2018 Oct; 1860(10):1985-1993. PubMed ID: 29730243
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Double Electron-Electron Resonance of Spin-Labeled Cholestane in Model Membranes: Evidence for Substructures inside the Lipid Rafts.
    Unguryan VV; Golysheva EA; Dzuba SA
    J Phys Chem B; 2021 Aug; 125(33):9557-9563. PubMed ID: 34387998
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Coarse-Grained Molecular Dynamics Simulations of Membrane-Trehalose Interactions.
    Kapla J; Stevensson B; Maliniak A
    J Phys Chem B; 2016 Sep; 120(36):9621-31. PubMed ID: 27530142
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Probing lipid-cholesterol interactions in DOPC/eSM/Chol and DOPC/DPPC/Chol model lipid rafts with DSC and (13)C solid-state NMR.
    Fritzsching KJ; Kim J; Holland GP
    Biochim Biophys Acta; 2013 Aug; 1828(8):1889-98. PubMed ID: 23567917
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Spatial Arrangement of the Drug Ibuprofen in a Model Membrane in the Presence of Lipid Rafts.
    Kashnik AS; Baranov DS; Dzuba SA
    J Phys Chem B; 2024 Apr; 128(15):3652-3661. PubMed ID: 38576273
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Influence of Lipid Saturation, Hydrophobic Length and Cholesterol on Double-Arginine-Containing Helical Peptides in Bilayer Membranes.
    Lipinski K; McKay MJ; Afrose F; Martfeld AN; Koeppe RE; Greathouse DV
    Chembiochem; 2019 Nov; 20(21):2784-2792. PubMed ID: 31150136
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Phase separation in a lipid/cholesterol system: comparison of coarse-grained and united-atom simulations.
    Hakobyan D; Heuer A
    J Phys Chem B; 2013 Apr; 117(14):3841-51. PubMed ID: 23470157
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Molecular insight into the effect of lipid bilayer environments on thrombospondin-1 and calreticulin interactions.
    Wang L; Murphy-Ullrich JE; Song Y
    Biochemistry; 2014 Oct; 53(40):6309-22. PubMed ID: 25260145
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cholesterol, sphingolipids, and glycolipids: what do we know about their role in raft-like membranes?
    Róg T; Vattulainen I
    Chem Phys Lipids; 2014 Dec; 184():82-104. PubMed ID: 25444976
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Interaction of fusidic acid with lipid membranes: Implications to the mechanism of antibiotic activity.
    Falck E; Hautala JT; Karttunen M; Kinnunen PK; Patra M; Saaren-Seppälä H; Vattulainen I; Wiedmer SK; Holopainen JM
    Biophys J; 2006 Sep; 91(5):1787-99. PubMed ID: 16782792
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.