These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

363 related articles for article (PubMed ID: 33078832)

  • 1. Predicting drug-disease associations through layer attention graph convolutional network.
    Yu Z; Huang F; Zhao X; Xiao W; Zhang W
    Brief Bioinform; 2021 Jul; 22(4):. PubMed ID: 33078832
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Predicting miRNA-disease associations via layer attention graph convolutional network model.
    Han H; Zhu R; Liu JX; Dai LY
    BMC Med Inform Decis Mak; 2022 Mar; 22(1):69. PubMed ID: 35305630
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A deep learning method for predicting metabolite-disease associations via graph neural network.
    Sun F; Sun J; Zhao Q
    Brief Bioinform; 2022 Jul; 23(4):. PubMed ID: 35817399
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Graph Convolutional Autoencoder and Fully-Connected Autoencoder with Attention Mechanism Based Method for Predicting Drug-Disease Associations.
    Xuan P; Gao L; Sheng N; Zhang T; Nakaguchi T
    IEEE J Biomed Health Inform; 2021 May; 25(5):1793-1804. PubMed ID: 33216722
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Hierarchical and dynamic graph attention network for drug-disease association prediction.
    Huang S; Wang M; Zheng X; Chen J; Tang C
    IEEE J Biomed Health Inform; 2024 Feb; PP():. PubMed ID: 38319783
    [TBL] [Abstract][Full Text] [Related]  

  • 6. MTAGCN: predicting miRNA-target associations in Camellia sinensis var. assamica through graph convolution neural network.
    Feng H; Xiang Y; Wang X; Xue W; Yue Z
    BMC Bioinformatics; 2022 Jul; 23(1):271. PubMed ID: 35820798
    [TBL] [Abstract][Full Text] [Related]  

  • 7. GCNGAT: Drug-disease association prediction based on graph convolution neural network and graph attention network.
    Yang R; Fu Y; Zhang Q; Zhang L
    Artif Intell Med; 2024 Apr; 150():102805. PubMed ID: 38553169
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Microbe-drug association prediction model based on graph convolution and attention networks.
    Wang B; Wang T; Du X; Li J; Wang J; Wu P
    Sci Rep; 2024 Sep; 14(1):22327. PubMed ID: 39333143
    [TBL] [Abstract][Full Text] [Related]  

  • 9. GCHN-DTI: Predicting drug-target interactions by graph convolution on heterogeneous networks.
    Wang W; Liang S; Yu M; Liu D; Zhang H; Wang X; Zhou Y
    Methods; 2022 Oct; 206():101-107. PubMed ID: 36058415
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Exploring noncoding RNAs in thyroid cancer using a graph convolutional network approach.
    Xu H; Hu X; Yan X; Zhong W; Yin D; Gai Y
    Comput Biol Med; 2022 Jun; 145():105447. PubMed ID: 35430557
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Drug repositioning based on residual attention network and free multiscale adversarial training.
    Li G; Li S; Liang C; Xiao Q; Luo J
    BMC Bioinformatics; 2024 Aug; 25(1):261. PubMed ID: 39118000
    [TBL] [Abstract][Full Text] [Related]  

  • 12. GVDTI: graph convolutional and variational autoencoders with attribute-level attention for drug-protein interaction prediction.
    Xuan P; Fan M; Cui H; Zhang T; Nakaguchi T
    Brief Bioinform; 2022 Jan; 23(1):. PubMed ID: 34718408
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Predicting the potential human lncRNA-miRNA interactions based on graph convolution network with conditional random field.
    Wang W; Zhang L; Sun J; Zhao Q; Shuai J
    Brief Bioinform; 2022 Nov; 23(6):. PubMed ID: 36305458
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Drug repositioning based on the heterogeneous information fusion graph convolutional network.
    Cai L; Lu C; Xu J; Meng Y; Wang P; Fu X; Zeng X; Su Y
    Brief Bioinform; 2021 Nov; 22(6):. PubMed ID: 34378011
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Graph embedding ensemble methods based on the heterogeneous network for lncRNA-miRNA interaction prediction.
    Zhao C; Qiu Y; Zhou S; Liu S; Zhang W; Niu Y
    BMC Genomics; 2020 Dec; 21(Suppl 13):867. PubMed ID: 33334307
    [TBL] [Abstract][Full Text] [Related]  

  • 16. EmbedDTI: Enhancing the Molecular Representations via Sequence Embedding and Graph Convolutional Network for the Prediction of Drug-Target Interaction.
    Jin Y; Lu J; Shi R; Yang Y
    Biomolecules; 2021 Nov; 11(12):. PubMed ID: 34944427
    [TBL] [Abstract][Full Text] [Related]  

  • 17. gGATLDA: lncRNA-disease association prediction based on graph-level graph attention network.
    Wang L; Zhong C
    BMC Bioinformatics; 2022 Jan; 23(1):11. PubMed ID: 34983363
    [TBL] [Abstract][Full Text] [Related]  

  • 18. ETGPDA: identification of piRNA-disease associations based on embedding transformation graph convolutional network.
    Meng X; Shang J; Ge D; Yang Y; Zhang T; Liu JX
    BMC Genomics; 2023 May; 24(1):279. PubMed ID: 37226081
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Dual graph convolutional neural network for predicting chemical networks.
    Harada S; Akita H; Tsubaki M; Baba Y; Takigawa I; Yamanishi Y; Kashima H
    BMC Bioinformatics; 2020 Apr; 21(Suppl 3):94. PubMed ID: 32321421
    [TBL] [Abstract][Full Text] [Related]  

  • 20. SFGAE: a self-feature-based graph autoencoder model for miRNA-disease associations prediction.
    Ma M; Na S; Zhang X; Chen C; Xu J
    Brief Bioinform; 2022 Sep; 23(5):. PubMed ID: 36037084
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 19.