These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

272 related articles for article (PubMed ID: 33078930)

  • 1. Evaluating Simple
    Park SJ; Schwartz BJ
    J Phys Chem B; 2020 Oct; 124(43):9592-9603. PubMed ID: 33078930
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Understanding the Temperature Dependence and Finite Size Effects in Ab Initio MD Simulations of the Hydrated Electron.
    Park SJ; Schwartz BJ
    J Chem Theory Comput; 2022 Aug; 18(8):4973-4982. PubMed ID: 35834750
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The Fluxional Nature of the Hydrated Electron: Energy and Entropy Contributions to Aqueous Electron Free Energies.
    Glover WJ; Schwartz BJ
    J Chem Theory Comput; 2020 Feb; 16(2):1263-1270. PubMed ID: 31914315
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Structure, dynamics, and reactivity of hydrated electrons by ab initio molecular dynamics.
    Marsalek O; Uhlig F; VandeVondele J; Jungwirth P
    Acc Chem Res; 2012 Jan; 45(1):23-32. PubMed ID: 21899274
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Resonance Raman and temperature-dependent electronic absorption spectra of cavity and noncavity models of the hydrated electron.
    Casey JR; Larsen RE; Schwartz BJ
    Proc Natl Acad Sci U S A; 2013 Feb; 110(8):2712-7. PubMed ID: 23382233
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Temperature dependence of the hydrated electron's excited-state relaxation. I. Simulation predictions of resonance Raman and pump-probe transient absorption spectra of cavity and non-cavity models.
    Zho CC; Farr EP; Glover WJ; Schwartz BJ
    J Chem Phys; 2017 Aug; 147(7):074503. PubMed ID: 28830174
    [TBL] [Abstract][Full Text] [Related]  

  • 7. To be or not to be in a cavity: the hydrated electron dilemma.
    Casey JR; Kahros A; Schwartz BJ
    J Phys Chem B; 2013 Nov; 117(46):14173-82. PubMed ID: 24160853
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Temperature dependence of the hydrated electron's excited-state relaxation. II. Elucidating the relaxation mechanism through ultrafast transient absorption and stimulated emission spectroscopy.
    Farr EP; Zho CC; Challa JR; Schwartz BJ
    J Chem Phys; 2017 Aug; 147(7):074504. PubMed ID: 28830177
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A one-electron model for the aqueous electron that includes many-body electron-water polarization: Bulk equilibrium structure, vertical electron binding energy, and optical absorption spectrum.
    Jacobson LD; Herbert JM
    J Chem Phys; 2010 Oct; 133(15):154506. PubMed ID: 20969402
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The structure of the hydrated electron. Part 2. A mixed quantum/classical molecular dynamics embedded cluster density functional theory: single-excitation configuration interaction study.
    Shkrob IA; Glover WJ; Larsen RE; Schwartz BJ
    J Phys Chem A; 2007 Jun; 111(24):5232-43. PubMed ID: 17530823
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A Simple ab Initio Model for the Hydrated Electron That Matches Experiment.
    Kumar A; Walker JA; Bartels DM; Sevilla MD
    J Phys Chem A; 2015 Aug; 119(34):9148-59. PubMed ID: 26275103
    [TBL] [Abstract][Full Text] [Related]  

  • 12.
    Dasgupta S; Rana B; Herbert JM
    J Phys Chem B; 2019 Sep; 123(38):8074-8085. PubMed ID: 31442044
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Hydrated Electrons in Water Clusters: Inside or Outside, Cavity or Noncavity?
    Turi L
    J Chem Theory Comput; 2015 Apr; 11(4):1745-55. PubMed ID: 26889512
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Free Energies of Cavity and Noncavity Hydrated Electrons Near the Instantaneous Air/Water Interface.
    Casey JR; Schwartz BJ; Glover WJ
    J Phys Chem Lett; 2016 Aug; 7(16):3192-8. PubMed ID: 27479028
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Thermal Equilibration Controls H-Bonding and the Vertical Detachment Energy of Water Cluster Anions.
    Zho CC; Vlček V; Neuhauser D; Schwartz BJ
    J Phys Chem Lett; 2018 Sep; 9(17):5173-5178. PubMed ID: 30129761
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The roles of electronic exchange and correlation in charge-transfer- to-solvent dynamics: Many-electron nonadiabatic mixed quantum/classical simulations of photoexcited sodium anions in the condensed phase.
    Glover WJ; Larsen RE; Schwartz BJ
    J Chem Phys; 2008 Oct; 129(16):164505. PubMed ID: 19045282
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Structure and dynamics of the hydration shells of the Zn(2+) ion from ab initio molecular dynamics and combined ab initio and classical molecular dynamics simulations.
    Cauët E; Bogatko S; Weare JH; Fulton JL; Schenter GK; Bylaska EJ
    J Chem Phys; 2010 May; 132(19):194502. PubMed ID: 20499974
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Partial Molar Solvation Volume of the Hydrated Electron Simulated Via DFT.
    Borrelli WR; Mei KJ; Park SJ; Schwartz BJ
    J Phys Chem B; 2024 Mar; 128(10):2425-2431. PubMed ID: 38422045
    [TBL] [Abstract][Full Text] [Related]  

  • 19. On the applicability of one- and many-electron quantum chemistry models for hydrated electron clusters.
    Turi L
    J Chem Phys; 2016 Apr; 144(15):154311. PubMed ID: 27389224
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Empirically Optimized One-Electron Pseudopotential for the Hydrated Electron: A Proof-of-Concept Study.
    Neupane P; Bartels DM; Thompson WH
    J Phys Chem B; 2023 Aug; 127(33):7361-7371. PubMed ID: 37556737
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.