BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

164 related articles for article (PubMed ID: 33078947)

  • 21. Bandgap Engineering of Graphene Nanoribbons by Control over Structural Distortion.
    Hu Y; Xie P; De Corato M; Ruini A; Zhao S; Meggendorfer F; Straasø LA; Rondin L; Simon P; Li J; Finley JJ; Hansen MR; Lauret JS; Molinari E; Feng X; Barth JV; Palma CA; Prezzi D; Müllen K; Narita A
    J Am Chem Soc; 2018 Jun; 140(25):7803-7809. PubMed ID: 29779378
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Precision Graphene Nanoribbon Heterojunctions by Chain-Growth Polymerization.
    Zhang JJ; Liu K; Xiao Y; Yu X; Huang L; Gao HJ; Ma J; Feng X
    Angew Chem Int Ed Engl; 2023 Oct; 62(41):e202310880. PubMed ID: 37594477
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Synthesis of structurally well-defined and liquid-phase-processable graphene nanoribbons.
    Narita A; Feng X; Hernandez Y; Jensen SA; Bonn M; Yang H; Verzhbitskiy IA; Casiraghi C; Hansen MR; Koch AH; Fytas G; Ivasenko O; Li B; Mali KS; Balandina T; Mahesh S; De Feyter S; Müllen K
    Nat Chem; 2014 Feb; 6(2):126-32. PubMed ID: 24451588
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Bottom-Up On-Surface Synthesis of Two-Dimensional Graphene Nanoribbon Networks and Their Thermoelectric Properties.
    Kojima T; Nakae T; Xu Z; Saravanan C; Watanabe K; Nakamura Y; Sakaguchi H
    Chem Asian J; 2019 Dec; 14(23):4400-4407. PubMed ID: 31724299
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The influence of edge structure on the electronic properties of graphene quantum dots and nanoribbons.
    Ritter KA; Lyding JW
    Nat Mater; 2009 Mar; 8(3):235-42. PubMed ID: 19219032
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Inserting Porphyrin Quantum Dots in Bottom-Up Synthesized Graphene Nanoribbons.
    Perkins W; Fischer FR
    Chemistry; 2017 Dec; 23(70):17687-17691. PubMed ID: 29108109
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Tuning the band gap of graphene nanoribbons synthesized from molecular precursors.
    Chen YC; de Oteyza DG; Pedramrazi Z; Chen C; Fischer FR; Crommie MF
    ACS Nano; 2013 Jul; 7(7):6123-8. PubMed ID: 23746141
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Atomistic Modelling of Size-Dependent Mechanical Properties and Fracture of Pristine and Defective Cove-Edged Graphene Nanoribbons.
    Damasceno DA; Rajapakse RKNDN; Mesquita E
    Nanomaterials (Basel); 2020 Jul; 10(7):. PubMed ID: 32708133
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Size, structure, and helical twist of graphene nanoribbons controlled by confinement in carbon nanotubes.
    Chamberlain TW; Biskupek J; Rance GA; Chuvilin A; Alexander TJ; Bichoutskaia E; Kaiser U; Khlobystov AN
    ACS Nano; 2012 May; 6(5):3943-53. PubMed ID: 22483078
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Vibrational signature of the graphene nanoribbon edge structure from high-resolution electron energy-loss spectroscopy.
    Cavani N; De Corato M; Ruini A; Prezzi D; Molinari E; Lodi Rizzini A; Rosi A; Biagi R; Corradini V; Wang XY; Feng X; Narita A; Müllen K; De Renzi V
    Nanoscale; 2020 Oct; 12(38):19681-19688. PubMed ID: 32996531
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Synthesis of Nonplanar Graphene Nanoribbon with Fjord Edges.
    Yao X; Zheng W; Osella S; Qiu Z; Fu S; Schollmeyer D; Müller B; Beljonne D; Bonn M; Wang HI; Müllen K; Narita A
    J Am Chem Soc; 2021 Apr; 143(15):5654-5658. PubMed ID: 33825484
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Armchair-edged nanoribbon as a bottleneck to electronic total transmission through a topologically nontrivial graphene nanojunction.
    Jiang L; Liu Z; Zhao X; Zheng Y
    J Phys Condens Matter; 2016 Mar; 28(8):085501. PubMed ID: 26828909
    [TBL] [Abstract][Full Text] [Related]  

  • 33. A guide to the design of electronic properties of graphene nanoribbons.
    Yazyev OV
    Acc Chem Res; 2013 Oct; 46(10):2319-28. PubMed ID: 23282074
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Magneto-electronic properties of graphene nanoribbons with various edge structures passivated by phosphorus and hydrogen atoms.
    Yu ZL; Wang D; Zhu Z; Zhang ZH
    Phys Chem Chem Phys; 2015 Oct; 17(37):24020-8. PubMed ID: 26313414
    [TBL] [Abstract][Full Text] [Related]  

  • 35. On-Surface Synthesis of NBN-Doped Zigzag-Edged Graphene Nanoribbons.
    Fu Y; Yang H; Gao Y; Huang L; Berger R; Liu J; Lu H; Cheng Z; Du S; Gao HJ; Feng X
    Angew Chem Int Ed Engl; 2020 Jun; 59(23):8873-8879. PubMed ID: 32134547
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Electronic structure changes during the surface-assisted formation of a graphene nanoribbon.
    Bronner C; Utecht M; Haase A; Saalfrank P; Klamroth T; Tegeder P
    J Chem Phys; 2014 Jan; 140(2):024701. PubMed ID: 24437896
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Photoluminescent Semiconducting Graphene Nanoribbons via Longitudinally Unzipping Single-Walled Carbon Nanotubes.
    Li H; Zhang J; Gholizadeh AB; Brownless J; Fu Y; Cai W; Han Y; Duan T; Wang Y; Ling H; Leifer K; Curry R; Song A
    ACS Appl Mater Interfaces; 2021 Nov; 13(44):52892-52900. PubMed ID: 34719923
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Al2C Monolayer Sheet and Nanoribbons with Unique Direction-Dependent Acoustic-Phonon-Limited Carrier Mobility and Carrier Polarity.
    Xu Y; Dai J; Zeng XC
    J Phys Chem Lett; 2016 Jan; 7(2):302-7. PubMed ID: 26722716
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Modified Engineering of Graphene Nanoribbons Prepared via On-Surface Synthesis.
    Zhou X; Yu G
    Adv Mater; 2020 Feb; 32(6):e1905957. PubMed ID: 31830353
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Intrinsic Charge Separation and Tunable Electronic Band Gap of Armchair Graphene Nanoribbons Encapsulated in a Double-Walled Carbon Nanotube.
    Kou L; Tang C; Frauenheim T; Chen C
    J Phys Chem Lett; 2013 Apr; 4(8):1328-33. PubMed ID: 26282148
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.