These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 33079103)

  • 1. Temperature gradient-driven motion and assembly of two-dimensional (2D) materials on the liquid surface: a theoretical framework and molecular dynamics simulation.
    Wen Y; Liu Q; Liu Y
    Phys Chem Chem Phys; 2020 Oct; 22(41):24097-24108. PubMed ID: 33079103
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Actuating Water Droplets on Graphene via Surface Wettability Gradients.
    Liu Q; Xu B
    Langmuir; 2015 Aug; 31(33):9070-5. PubMed ID: 26244449
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Thermal Gradients on Graphene to Drive Nanoflake Motion.
    Becton M; Wang X
    J Chem Theory Comput; 2014 Feb; 10(2):722-30. PubMed ID: 26580049
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Toward steering the motion of surface rolling molecular machines by straining graphene substrate.
    Vaezi M; Nejat Pishkenari H
    Sci Rep; 2023 Nov; 13(1):20816. PubMed ID: 38012233
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Rapid Programmable Nanodroplet Motion on a Strain-Gradient Surface.
    Zhang B; Liao X; Chen Y; Xiao H; Ni Y; Chen X
    Langmuir; 2019 Feb; 35(7):2865-2870. PubMed ID: 30600996
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Temperature profiles and heat fluxes observed in molecular dynamics simulations of force-driven liquid flows.
    Ghorbanian J; Beskok A
    Phys Chem Chem Phys; 2017 Apr; 19(16):10317-10325. PubMed ID: 28398441
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Molecular dynamics simulations for the motion of evaporative droplets driven by thermal gradients along nanochannels.
    Wu C; Xu X; Qian T
    J Phys Condens Matter; 2013 May; 25(19):195103. PubMed ID: 23552493
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Directed motion of C60 on a graphene sheet subjected to a temperature gradient.
    Lohrasebi A; Neek-Amal M; Ejtehadi MR
    Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Apr; 83(4 Pt 1):042601. PubMed ID: 21599222
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mechanism of ultra low friction of multilayer graphene studied by coarse-grained molecular simulation.
    Washizu H; Kajita S; Tohyama M; Ohmori T; Nishino N; Teranishi H; Suzuki A
    Faraday Discuss; 2012; 156():279-91; discussion 293-309. PubMed ID: 23285635
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Programmable Transport of C60 by Straining Graphene Substrate.
    Vaezi M; Nejat Pishkenari H; Ejtehadi MR
    Langmuir; 2023 Mar; 39(12):4483-4494. PubMed ID: 36926912
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Anisotropy of Graphene Nanoflake Diamond Interface Frictional Properties.
    Zhang J; Osloub E; Siddiqui F; Zhang W; Ragab T; Basaran C
    Materials (Basel); 2019 May; 12(9):. PubMed ID: 31052418
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Kinetics of solid-liquid interface motion in molecular dynamics and phase-field models: crystallization of chromium and silicon.
    Karim ET; He M; Salhoumi A; Zhigilei LV; Galenko PK
    Philos Trans A Math Phys Eng Sci; 2021 Sep; 379(2205):20200320. PubMed ID: 34275355
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Controllable nanoscale rotating actuator system based on carbon nanotube and graphene.
    Huang J; Han Q
    Nanotechnology; 2016 Apr; 27(15):155501. PubMed ID: 26934619
    [TBL] [Abstract][Full Text] [Related]  

  • 14. In-Plane Potential Gradient Induces Low Frictional Energy Dissipation during the Stick-Slip Sliding on the Surfaces of 2D Materials.
    He F; Yang X; Bian Z; Xie G; Guo D; Luo J
    Small; 2019 Dec; 15(49):e1904613. PubMed ID: 31639269
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Vanishing stick-slip friction in few-layer graphenes: the thickness effect.
    Xu L; Ma TB; Hu YZ; Wang H
    Nanotechnology; 2011 Jul; 22(28):285708. PubMed ID: 21646695
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Molecular Dynamics Study of Thermally Augmented Nanodroplet Motion on Chemical Energy Induced Wettability Gradient Surfaces.
    Chakraborty M; Chowdhury A; Bhusan R; DasGupta S
    Langmuir; 2015 Oct; 31(41):11260-8. PubMed ID: 26381847
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Unidirectional Self-Driving Liquid Droplet Transport on a Monolayer Graphene-Covered Textured Substrate.
    Zhang Z; Guo X; Tang H; Ding J; Zheng YG; Li S
    ACS Appl Mater Interfaces; 2019 Aug; 11(31):28562-28570. PubMed ID: 31304739
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Edge orientation dependent nanoscale friction.
    Zhang H; Chang T
    Nanoscale; 2018 Feb; 10(5):2447-2453. PubMed ID: 29336464
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Experimental study and modeling of atomic-scale friction in zigzag and armchair lattice orientations of MoS
    Li M; Shi J; Liu L; Yu P; Xi N; Wang Y
    Sci Technol Adv Mater; 2016; 17(1):189-199. PubMed ID: 27877869
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Tension gradient-driven oil/water interface rapid particle self-assembly and its application in microdroplet motion control.
    Li X; Feng D; Chen L; Weng D; Chen C; Wang J
    J Colloid Interface Sci; 2021 May; 589():187-197. PubMed ID: 33460851
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.