These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 33079103)

  • 21. Molecular dynamics simulations of nanoscale and sub-nanoscale friction behavior between graphene and a silicon tip: analysis of tip apex motion.
    Yoon HM; Jung Y; Jun SC; Kondaraju S; Lee JS
    Nanoscale; 2015 Apr; 7(14):6295-303. PubMed ID: 25782533
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Slip divergence of water flow in graphene nanochannels: the role of chirality.
    Wagemann E; Oyarzua E; Walther JH; Zambrano HA
    Phys Chem Chem Phys; 2017 Mar; 19(13):8646-8652. PubMed ID: 28195288
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Interlayer water regulates the bio-nano interface of a β-sheet protein stacking on graphene.
    Lv W; Xu G; Zhang H; Li X; Liu S; Niu H; Xu D; Wu R
    Sci Rep; 2015 Jan; 5():7572. PubMed ID: 25557857
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Soliton-like thermophoresis of graphene wrinkles.
    Guo Y; Guo W
    Nanoscale; 2013 Jan; 5(1):318-23. PubMed ID: 23166021
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Slip length of water on graphene: limitations of non-equilibrium molecular dynamics simulations.
    Kannam SK; Todd BD; Hansen JS; Daivis PJ
    J Chem Phys; 2012 Jan; 136(2):024705. PubMed ID: 22260608
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Ultralow liquid/solid friction in carbon nanotubes: comprehensive theory for alcohols, alkanes, OMCTS, and water.
    Falk K; Sedlmeier F; Joly L; Netz RR; Bocquet L
    Langmuir; 2012 Oct; 28(40):14261-72. PubMed ID: 22974715
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Atomic Simulation of Nanoindentation on the Regular Wrinkled Graphene Sheet.
    Wang R; Pang H; Li M; Lai L
    Materials (Basel); 2020 Mar; 13(5):. PubMed ID: 32138250
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Stick-slip control in nanoscale boundary lubrication by surface wettability.
    Chen W; Foster AS; Alava MJ; Laurson L
    Phys Rev Lett; 2015 Mar; 114(9):095502. PubMed ID: 25793825
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Water thermophoresis in carbon nanotubes: the interplay between thermophoretic and friction forces.
    Oyarzua E; Walther JH; Zambrano HA
    Phys Chem Chem Phys; 2018 Jan; 20(5):3672-3677. PubMed ID: 29344599
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Ultrafast Propulsion of Water Nanodroplets on Patterned Graphene.
    Papadopoulou E; Megaridis CM; Walther JH; Koumoutsakos P
    ACS Nano; 2019 May; 13(5):5465-5472. PubMed ID: 31025854
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Dependence of the friction strengthening of graphene on velocity.
    Zeng X; Peng Y; Liu L; Lang H; Cao X
    Nanoscale; 2018 Jan; 10(4):1855-1864. PubMed ID: 29309078
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Motion Driven by Strain Gradient Fields.
    Wang C; Chen S
    Sci Rep; 2015 Sep; 5():13675. PubMed ID: 26323603
    [TBL] [Abstract][Full Text] [Related]  

  • 33. A Molecular Dynamics Study on Rotational Nanofluid and Its Application to Desalination.
    Tu Q; Ibrahimi W; Ren S; Wu J; Li S
    Membranes (Basel); 2020 Jun; 10(6):. PubMed ID: 32517208
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Oscillatory motion in layered materials: graphene, boron nitride, and molybdenum disulfide.
    Ye Z; Otero-de-la-Roza A; Johnson ER; Martini A
    Nanotechnology; 2015 Apr; 26(16):165701. PubMed ID: 25815685
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Nanoserpents: Graphene Nanoribbon Motion on Two-Dimensional Hexagonal Materials.
    Ouyang W; Mandelli D; Urbakh M; Hod O
    Nano Lett; 2018 Sep; 18(9):6009-6016. PubMed ID: 30109806
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Controllable Fabrication of Graphene and Related Two-Dimensional Materials on Liquid Metals via Chemical Vapor Deposition.
    Zeng M; Fu L
    Acc Chem Res; 2018 Nov; 51(11):2839-2847. PubMed ID: 30222313
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Slip flow in graphene nanochannels.
    Kannam SK; Todd BD; Hansen JS; Daivis PJ
    J Chem Phys; 2011 Oct; 135(14):144701. PubMed ID: 22010725
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Molecular dynamics simulation of nonlinear spectroscopies of intermolecular motions in liquid water.
    Yagasaki T; Saito S
    Acc Chem Res; 2009 Sep; 42(9):1250-8. PubMed ID: 19469530
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Self-assembly of graphene ribbons by spontaneous self-tearing and peeling from a substrate.
    Annett J; Cross GL
    Nature; 2016 Jul; 535(7611):271-5. PubMed ID: 27411633
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Compression Limit of Two-Dimensional Water Constrained in Graphene Nanocapillaries.
    Zhu Y; Wang F; Bai J; Zeng XC; Wu H
    ACS Nano; 2015 Dec; 9(12):12197-204. PubMed ID: 26575824
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.