These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 33079103)

  • 41. Unidirectional motion of a water nanodroplet subjected to a surface energy gradient.
    Kou J; Mei M; Lu H; Wu F; Fan J
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 May; 85(5 Pt 2):056301. PubMed ID: 23004857
    [TBL] [Abstract][Full Text] [Related]  

  • 42. The structure of graphene on graphene/C
    Fonseca AF; Dantas SO; Galvão DS; Zhang D; Sinnott SB
    Nanotechnology; 2019 Dec; 30(50):505707. PubMed ID: 31519001
    [TBL] [Abstract][Full Text] [Related]  

  • 43. The role of water models on the prediction of slip length of water in graphene nanochannels.
    Celebi AT; Nguyen CT; Hartkamp R; Beskok A
    J Chem Phys; 2019 Nov; 151(17):174705. PubMed ID: 31703484
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Water transport confined in graphene oxide channels through the rarefied effect.
    Chen B; Jiang H; Liu X; Hu X
    Phys Chem Chem Phys; 2018 Apr; 20(15):9780-9786. PubMed ID: 29465114
    [TBL] [Abstract][Full Text] [Related]  

  • 45. In Situ Investigation of the Motion Behavior of Graphene on Liquid Copper.
    Wang L; Ding Y; Wang X; Lai R; Zeng M; Fu L
    Adv Sci (Weinh); 2021 Sep; 8(17):e2100334. PubMed ID: 34240577
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Water adsorption and dynamics on graphene and other 2D materials: Computational and experimental advances.
    Sacchi M; Tamtögl A
    Adv Phys X; 2022 Nov; 8(1):2134051. PubMed ID: 36816858
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Formation of Two-Dimensional Micelles on Graphene: Multi-Scale Theoretical and Experimental Study.
    Robinson BJ; Bailey SW; O'Driscoll LJ; Visontai D; Welsh DJ; Mostert AB; Mazzocco R; Rabot C; Jarvis SP; Kolosov OV; Bryce MR; Lambert C
    ACS Nano; 2017 Mar; 11(3):3404-3412. PubMed ID: 28282115
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Understanding the colloidal dispersion stability of 1D and 2D materials: Perspectives from molecular simulations and theoretical modeling.
    Lin S; Shih CJ; Sresht V; Govind Rajan A; Strano MS; Blankschtein D
    Adv Colloid Interface Sci; 2017 Jun; 244():36-53. PubMed ID: 27521100
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Theoretical description of molecular permeation via surface diffusion through graphene nanopores.
    Sun C; Luo K; Zhou R; Bai B
    Phys Chem Chem Phys; 2021 Mar; 23(12):7057-7065. PubMed ID: 33690758
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Thermophoretic Motion of a Sphere Parallel to an Insulated Plane.
    Chen SH
    J Colloid Interface Sci; 2000 Apr; 224(1):63-75. PubMed ID: 10708494
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Two- and three-dimensional self-folding of free-standing graphene by liquid evaporation.
    Liu Q; Xu B
    Soft Matter; 2018 Jul; 14(29):5968-5976. PubMed ID: 29855650
    [TBL] [Abstract][Full Text] [Related]  

  • 52. A molecular dynamics study of the motion of a nanodroplet of pure liquid on a wetting gradient.
    Halverson JD; Maldarelli C; Couzis A; Koplik J
    J Chem Phys; 2008 Oct; 129(16):164708. PubMed ID: 19045299
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Understanding the stabilization of liquid-phase-exfoliated graphene in polar solvents: molecular dynamics simulations and kinetic theory of colloid aggregation.
    Shih CJ; Lin S; Strano MS; Blankschtein D
    J Am Chem Soc; 2010 Oct; 132(41):14638-48. PubMed ID: 20879739
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Interfacial friction based quasi-continuum hydrodynamical model for nanofluidic transport of water.
    Bhadauria R; Sanghi T; Aluru NR
    J Chem Phys; 2015 Nov; 143(17):174702. PubMed ID: 26547177
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Dominance of Dispersion Interactions and Entropy over Electrostatics in Determining the Wettability and Friction of Two-Dimensional MoS
    Govind Rajan A; Sresht V; Pádua AAH; Strano MS; Blankschtein D
    ACS Nano; 2016 Oct; 10(10):9145-9155. PubMed ID: 27575956
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Thermophoresis in liquids: a molecular dynamics simulation study.
    Han M
    J Colloid Interface Sci; 2005 Apr; 284(1):339-48. PubMed ID: 15752822
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Molecular dynamics simulation of the behaviour of water in nano-confined ionic liquid-water mixtures.
    Docampo-Álvarez B; Gómez-González V; Montes-Campos H; Otero-Mato JM; Méndez-Morales T; Cabeza O; Gallego LJ; Lynden-Bell RM; Ivaništšev VB; Fedorov MV; Varela LM
    J Phys Condens Matter; 2016 Nov; 28(46):464001. PubMed ID: 27623714
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Stabilization of 2D graphene, functionalized graphene, and Ti
    Khaledialidusti R; Mahdavi E; Barnoush A
    Phys Chem Chem Phys; 2019 Jun; 21(24):12968-12976. PubMed ID: 31165831
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Droplet motion in one-component fluids on solid substrates with wettability gradients.
    Xu X; Qian T
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 May; 85(5 Pt 1):051601. PubMed ID: 23004770
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Atomic-level study of adsorption, conformational change, and dimerization of an α-helical peptide at graphene surface.
    Ou L; Luo Y; Wei G
    J Phys Chem B; 2011 Aug; 115(32):9813-22. PubMed ID: 21692466
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.