BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

161 related articles for article (PubMed ID: 3307917)

  • 1. Probing the functional role of phenylalanine-31 of Escherichia coli dihydrofolate reductase by site-directed mutagenesis.
    Chen JT; Taira K; Tu CP; Benkovic SJ
    Biochemistry; 1987 Jun; 26(13):4093-100. PubMed ID: 3307917
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Investigation of the functional role of tryptophan-22 in Escherichia coli dihydrofolate reductase by site-directed mutagenesis.
    Warren MS; Brown KA; Farnum MF; Howell EE; Kraut J
    Biochemistry; 1991 Nov; 30(46):11092-103. PubMed ID: 1932031
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Construction and evaluation of the kinetic scheme associated with dihydrofolate reductase from Escherichia coli.
    Fierke CA; Johnson KA; Benkovic SJ
    Biochemistry; 1987 Jun; 26(13):4085-92. PubMed ID: 3307916
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Complementary perturbation of the kinetic mechanism and catalytic effectiveness of dihydrofolate reductase by side-chain interchange.
    Wagner CR; Thillet J; Benkovic SJ
    Biochemistry; 1992 Sep; 31(34):7834-40. PubMed ID: 1510969
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A kinetic study of wild-type and mutant dihydrofolate reductases from Lactobacillus casei.
    Andrews J; Fierke CA; Birdsall B; Ostler G; Feeney J; Roberts GC; Benkovic SJ
    Biochemistry; 1989 Jul; 28(14):5743-50. PubMed ID: 2505841
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effects of conversion of phenylalanine-31 to leucine on the function of human dihydrofolate reductase.
    Prendergast NJ; Appleman JR; Delcamp TJ; Blakley RL; Freisheim JH
    Biochemistry; 1989 May; 28(11):4645-50. PubMed ID: 2765506
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Evidence for a functional role of the dynamics of glycine-121 of Escherichia coli dihydrofolate reductase obtained from kinetic analysis of a site-directed mutant.
    Cameron CE; Benkovic SJ
    Biochemistry; 1997 Dec; 36(50):15792-800. PubMed ID: 9398309
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Engineering specificity for folate into dihydrofolate reductase from Escherichia coli.
    Posner BA; Li L; Bethell R; Tsuji T; Benkovic SJ
    Biochemistry; 1996 Feb; 35(5):1653-63. PubMed ID: 8634297
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Probing the functional role of threonine-113 of Escherichia coli dihydrofolate reductase for its effect on turnover efficiency, catalysis, and binding.
    Fierke CA; Benkovic SJ
    Biochemistry; 1989 Jan; 28(2):478-86. PubMed ID: 2496745
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mechanism of the reaction catalyzed by dihydrofolate reductase from Escherichia coli: pH and deuterium isotope effects with NADPH as the variable substrate.
    Morrison JF; Stone SR
    Biochemistry; 1988 Jul; 27(15):5499-506. PubMed ID: 3052578
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Site-directed mutagenesis of mouse dihydrofolate reductase. Mutants with increased resistance to methotrexate and trimethoprim.
    Thillet J; Absil J; Stone SR; Pictet R
    J Biol Chem; 1988 Sep; 263(25):12500-8. PubMed ID: 3045118
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Role of the active-site carboxylate in dihydrofolate reductase: kinetic and spectroscopic studies of the aspartate 26-->asparagine mutant of the Lactobacillus casei enzyme.
    Basran J; Casarotto MG; Barsukov IL; Roberts GC
    Biochemistry; 1995 Mar; 34(9):2872-82. PubMed ID: 7893701
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Probing the role of two hydrophobic active site residues in the human dihydrofolate reductase by site-directed mutagenesis.
    Schweitzer BI; Srimatkandada S; Gritsman H; Sheridan R; Venkataraghavan R; Bertino JR
    J Biol Chem; 1989 Dec; 264(34):20786-95. PubMed ID: 2684985
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Hydrophobic interactions via mutants of Escherichia coli dihydrofolate reductase: separation of binding and catalysis.
    Murphy DJ; Benkovic SJ
    Biochemistry; 1989 Apr; 28(7):3025-31. PubMed ID: 2663066
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Nonadditivity of mutational effects at the folate binding site of Escherichia coli dihydrofolate reductase.
    Huang Z; Wagner CR; Benkovic SJ
    Biochemistry; 1994 Sep; 33(38):11576-85. PubMed ID: 7918371
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Critical role of phenylalanine 34 of human dihydrofolate reductase in substrate and inhibitor binding and in catalysis.
    Nakano T; Spencer HT; Appleman JR; Blakley RL
    Biochemistry; 1994 Aug; 33(33):9945-52. PubMed ID: 8061003
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Dihydrofolate reductase from Escherichia coli: probing the role of aspartate-27 and phenylalanine-137 in enzyme conformation and the binding of NADPH.
    Dunn SM; Lanigan TM; Howell EE
    Biochemistry; 1990 Sep; 29(37):8569-76. PubMed ID: 2271540
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Role of the conserved active site residue tryptophan-24 of human dihydrofolate reductase as revealed by mutagenesis.
    Beard WA; Appleman JR; Huang SM; Delcamp TJ; Freisheim JH; Blakley RL
    Biochemistry; 1991 Feb; 30(5):1432-40. PubMed ID: 1991124
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Dihydrofolate reductase from Escherichia coli: the kinetic mechanism with NADPH and reduced acetylpyridine adenine dinucleotide phosphate as substrates.
    Stone SR; Morrison JF
    Biochemistry; 1988 Jul; 27(15):5493-9. PubMed ID: 3052577
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Impact on catalysis of secondary structural manipulation of the alpha C-helix of Escherichia coli dihydrofolate reductase.
    Li LY; Benkovic SJ
    Biochemistry; 1991 Feb; 30(6):1470-8. PubMed ID: 1993166
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.