BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

309 related articles for article (PubMed ID: 3307926)

  • 1. The presence of functional arginine residues in phosphoenolpyruvate carboxykinase from Saccharomyces cerevisiae.
    Malebrán LP; Cardemil E
    Biochim Biophys Acta; 1987 Oct; 915(3):385-92. PubMed ID: 3307926
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Arginine residues at the active site of avian liver phosphoenolpyruvate carboxykinase.
    Cheng KC; Nowak T
    J Biol Chem; 1989 Feb; 264(6):3317-24. PubMed ID: 2536743
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Affinity labeling of Saccharomyces cerevisiae phosphoenolpyruvate carboxykinase with the 2',3'-dialdehyde derivative of ATP.
    Saavedra C; Araneda S; Cardemil E
    Arch Biochem Biophys; 1988 Nov; 267(1):38-45. PubMed ID: 3058040
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Inactivation of crystalline tobacco ribulosebisphosphate carboxylase by modification of arginine residues with 2,3-butanedione and phenylglyoxal.
    Chollet R
    Biochim Biophys Acta; 1981 Apr; 658(2):177-90. PubMed ID: 7248300
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Inactivation of L-lactate monooxygenase with 2,3-butanedione and phenylglyoxal.
    Peters RG; Jones WC; Cromartie TH
    Biochemistry; 1981 Apr; 20(9):2564-71. PubMed ID: 7236621
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Pigeon liver malic enzyme: involvement of an arginyl residue at the binding site for malate and its analogs.
    Vernon CM; Hsu RY
    Arch Biochem Biophys; 1983 Aug; 225(1):296-305. PubMed ID: 6614923
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Reactivity of cysteinyl, arginyl, and lysyl residues of Escherichia coli phosphoenolpyruvate carboxykinase against group-specific chemical reagents.
    Bazaes S; Silva R; Goldie H; Cardemil E; Jabalquinto AM
    J Protein Chem; 1993 Oct; 12(5):571-7. PubMed ID: 8141999
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Reaction of neutral endopeptidase 24.11 (enkephalinase) with arginine reagents.
    Jackson DG; Hersh LB
    J Biol Chem; 1986 Jul; 261(19):8649-54. PubMed ID: 3522576
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Saccharomyces cerevisiae phosphoenolpyruvate carboxykinase: physicochemical characteristics of the nucleotide binding site, as deduced from fluorescent spectroscopy measurements.
    Encinas MV; Quiñones V; Cardemil E
    Biochemistry; 1990 May; 29(19):4548-53. PubMed ID: 2196937
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Probing the active site residues in aromatic donor oxidation in horseradish peroxidase: involvement of an arginine and a tyrosine residue in aromatic donor binding.
    Adak S; Mazumder A; Banerjee RK
    Biochem J; 1996 Mar; 314 ( Pt 3)(Pt 3):985-91. PubMed ID: 8615798
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Modification of the phosphatidylcholine-transfer protein from bovine liver with butanedione and phenylglyoxal. Evidence for one essential arginine residue.
    Akeroyd R; Lange LG; Westerman J; Wirtz KW
    Eur J Biochem; 1981 Dec; 121(1):77-81. PubMed ID: 7327172
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Inactivation of carbonyl reductase from human brain by phenylglyoxal and 2,3-butanedione: a comparison with aldehyde reductase and aldose reductase.
    Bohren KM; von Wartburg JP; Wermuth B
    Biochim Biophys Acta; 1987 Nov; 916(2):185-92. PubMed ID: 3118957
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Chemical modification of the calmodulin-stimulated phosphatase, calcineurin, by phenylglyoxal.
    King MM; Heiny LP
    J Biol Chem; 1987 Aug; 262(22):10658-62. PubMed ID: 3611085
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Evidence for an essential arginine residue at the active site of ATP citrate lyase from rat liver.
    Ramakrishna S; Benjamin WB
    Biochem J; 1981 Jun; 195(3):735-43. PubMed ID: 7316981
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Arginyl and histidyl groups are essential for organic anion exchange in renal brush-border membrane vesicles.
    Sokol PP; Holohan PD; Ross CR
    J Biol Chem; 1988 May; 263(15):7118-23. PubMed ID: 3366770
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Chemical modification of arginine residues in the lactose repressor.
    Whitson PA; Matthews KS
    Biochemistry; 1987 Oct; 26(20):6502-7. PubMed ID: 3322382
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Chemical modification of a functional arginine residue in diadenosine 5',5'''-P1,P4-tetraphosphate (Ap4A) phosphorylase I from Saccharomyces cerevisiae.
    Robinson AK; Barnes LD
    Biochem J; 1991 Oct; 279 ( Pt 1)(Pt 1):135-9. PubMed ID: 1656937
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Trypanosoma cruzi phospho enol pyruvate carboxykinase (ATP-dependent): transition metal ion requirement for activity and sulfhydryl group reactivity.
    Jurado LA; Machín I; Urbina JA
    Biochim Biophys Acta; 1996 Jan; 1292(1):188-96. PubMed ID: 8547343
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Reactive sulfhydryl groups in Saccharomyces cerevisiae phosphoenolpyruvate carboxykinase.
    Cardemil E; Encinas MV; Jabalquinto AM
    Biochim Biophys Acta; 1990 Aug; 1040(1):71-6. PubMed ID: 2198945
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Chemical modification of rabbit skeletal muscle phosphorylase kinase with phenylglyoxal.
    Soman G; Graves DJ
    Arch Biochem Biophys; 1986 Jul; 248(1):341-52. PubMed ID: 3089165
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.