These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

202 related articles for article (PubMed ID: 33079422)

  • 41. Exfoliated Fluorographene Quantum Dots as Outstanding Passivants for Improved Flexible Perovskite Solar Cells.
    Yang L; Li Y; Wang L; Pei Y; Wang Z; Zhang Y; Lin H; Li X
    ACS Appl Mater Interfaces; 2020 May; 12(20):22992-23001. PubMed ID: 32343556
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Ambient processed (110) preferred MAPbI
    Guo R; Dahal B; Thapa A; Poudel YR; Liu Y; Li W
    Nanoscale Adv; 2021 Apr; 3(7):2056-2064. PubMed ID: 36133090
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Imidazoanthraquinone Derivative as a Surface Passivator for Enhanced and Stable Perovskite Solar Cells.
    Siddiqui QT; Kotta A; Seo I; Seo HK
    ACS Omega; 2024 Mar; 9(11):13373-13381. PubMed ID: 38524482
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Making and Breaking of Lead Halide Perovskites.
    Manser JS; Saidaminov MI; Christians JA; Bakr OM; Kamat PV
    Acc Chem Res; 2016 Feb; 49(2):330-8. PubMed ID: 26789596
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Ambient Pressure X-ray Photoelectron Spectroscopy Investigation of Thermally Stable Halide Perovskite Solar Cells via Post-Treatment.
    Ning S; Zhang S; Sun J; Li C; Zheng J; Khalifa YM; Zhou S; Cao J; Wu Y
    ACS Appl Mater Interfaces; 2020 Sep; 12(39):43705-43713. PubMed ID: 32885658
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Dual Defect-Passivation Using Phthalocyanine for Enhanced Efficiency and Stability of Perovskite Solar Cells.
    Hu Q; Rezaee E; Xu W; Ramachandran R; Chen Q; Xu H; El-Assaad T; McGrath DV; Xu ZX
    Small; 2021 Jan; 17(1):e2005216. PubMed ID: 33289962
    [TBL] [Abstract][Full Text] [Related]  

  • 47. How machine learning can help select capping layers to suppress perovskite degradation.
    Hartono NTP; Thapa J; Tiihonen A; Oviedo F; Batali C; Yoo JJ; Liu Z; Li R; Marrón DF; Bawendi MG; Buonassisi T; Sun S
    Nat Commun; 2020 Aug; 11(1):4172. PubMed ID: 32820159
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Enhanced Thermal Stability of Planar Perovskite Solar Cells Through Triphenylphosphine Interface Passivation.
    Thambidurai M; Omer MI; Shini F; Dewi HA; Jamaludin NF; Koh TM; Tang X; Mathews N; Dang C
    ChemSusChem; 2022 Apr; 15(8):e202102189. PubMed ID: 35289479
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Acetamidinium-Substituted Methylammonium Lead Iodide Perovskite Solar Cells with Higher Open-Circuit Voltage and Improved Intrinsic Stability.
    Singh P; Mukherjee R; Avasthi S
    ACS Appl Mater Interfaces; 2020 Mar; 12(12):13982-13987. PubMed ID: 32129058
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Stable and High-Efficiency Methylammonium-Free Perovskite Solar Cells.
    Gao XX; Luo W; Zhang Y; Hu R; Zhang B; Züttel A; Feng Y; Nazeeruddin MK
    Adv Mater; 2020 Mar; 32(9):e1905502. PubMed ID: 31984596
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Improved Pore-Filling and Passivation of Defects in Hole-Conductor-Free, Fully Printable Mesoscopic Perovskite Solar Cells Based on d-Sorbitol Hexaacetate-Modified MAPbI
    Liu J; Wang D; Chen K; She B; Liu B; Huang Y; Xie W; Zhang J; Zhang H
    ACS Appl Mater Interfaces; 2020 Oct; 12(42):47677-47683. PubMed ID: 33023290
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Accelerated Thermal-Aging-Induced Degradation of Organometal Triiodide Perovskite on ZnO Nanostructures and Its Effect on Hybrid Photovoltaic Devices.
    Kumar S; Dhar A
    ACS Appl Mater Interfaces; 2016 Jul; 8(28):18309-20. PubMed ID: 27351932
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Monoammonium Porphyrin for Blade-Coating Stable Large-Area Perovskite Solar Cells with >18% Efficiency.
    Li C; Yin J; Chen R; Lv X; Feng X; Wu Y; Cao J
    J Am Chem Soc; 2019 Apr; 141(15):6345-6351. PubMed ID: 30875223
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Improving the Stability of Halide Perovskite Solar Cells Using Nanoparticles of Tungsten Disulfide.
    Immanuel PN; Huang SJ; Danchuk V; Sedova A; Prilusky J; Goldreich A; Shalom H; Musin A; Yadgarov L
    Nanomaterials (Basel); 2022 Dec; 12(24):. PubMed ID: 36558307
    [TBL] [Abstract][Full Text] [Related]  

  • 55. CH
    Zhang Y; Kim SG; Lee DK; Park NG
    ChemSusChem; 2018 Jun; 11(11):1813-1823. PubMed ID: 29740983
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Terbium-Doped and Dual-Passivated γ-CsPb(I
    Mali SS; Patil JV; Rondiya SR; Dzade NY; Steele JA; Nazeeruddin MK; Patil PS; Hong CK
    Adv Mater; 2022 Jul; 34(29):e2203204. PubMed ID: 35581144
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Ambient Spray Coating of Organic-Inorganic Composite Thin Films for Perovskite Solar Cell Encapsulation.
    Luo Z; Zhang C; Yang L; Zhang J
    ChemSusChem; 2022 Feb; 15(3):e202102008. PubMed ID: 34859603
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Enhanced Photovoltaic Performance of Inverted Perovskite Solar Cells through Surface Modification of a NiO
    Ho IH; Huang YJ; Cai CE; Liu BT; Wu TM; Lee RH
    Polymers (Basel); 2023 Jan; 15(2):. PubMed ID: 36679318
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Efficient Grain Boundary Suture by Low-Cost Tetra-ammonium Zinc Phthalocyanine for Stable Perovskite Solar Cells with Expanded Photoresponse.
    Cao J; Li C; Lv X; Feng X; Meng R; Wu Y; Tang Y
    J Am Chem Soc; 2018 Sep; 140(37):11577-11580. PubMed ID: 30125479
    [TBL] [Abstract][Full Text] [Related]  

  • 60. 1,10-Phenanthroline as an Efficient Bifunctional Passivating Agent for MAPbI
    Buyruk A; Blätte D; Günther M; Scheel MA; Hartmann NF; Döblinger M; Weis A; Hartschuh A; Müller-Buschbaum P; Bein T; Ameri T
    ACS Appl Mater Interfaces; 2021 Jul; 13(28):32894-32905. PubMed ID: 34240843
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.