BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

171 related articles for article (PubMed ID: 33079426)

  • 1. Distributed Electric Field Induces Orientations of Nanosheets to Prepare Hydrogels with Elaborate Ordered Structures and Programmed Deformations.
    Zhu QL; Dai CF; Wagner D; Daab M; Hong W; Breu J; Zheng Q; Wu ZL
    Adv Mater; 2020 Nov; 32(47):e2005567. PubMed ID: 33079426
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Patterned Electrode Assisted One-Step Fabrication of Biomimetic Morphing Hydrogels with Sophisticated Anisotropic Structures.
    Zhu QL; Dai CF; Wagner D; Khoruzhenko O; Hong W; Breu J; Zheng Q; Wu ZL
    Adv Sci (Weinh); 2021 Dec; 8(24):e2102353. PubMed ID: 34705341
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Programmable Deformations of Biomimetic Composite Hydrogels Embedded with Printed Fibers.
    Zheng SY; Li CY; Du M; Yin J; Qian J; Wu ZL; Zheng Q
    ACS Appl Mater Interfaces; 2020 Dec; 12(51):57497-57504. PubMed ID: 33319983
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Magneto-Orientation of Magnetic Double Stacks for Patterned Anisotropic Hydrogels with Multiple Responses and Modulable Motions.
    Dai CF; Khoruzhenko O; Zhang C; Zhu QL; Jiao D; Du M; Breu J; Zhao P; Zheng Q; Wu ZL
    Angew Chem Int Ed Engl; 2022 Aug; 61(35):e202207272. PubMed ID: 35749137
    [TBL] [Abstract][Full Text] [Related]  

  • 5. 3D printable, tough, magnetic hydrogels with programmed magnetization for fast actuation.
    Tang J; Sun B; Yin Q; Yang M; Hu J; Wang T
    J Mater Chem B; 2021 Nov; 9(44):9183-9190. PubMed ID: 34698328
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Light-steered locomotion of muscle-like hydrogel by self-coordinated shape change and friction modulation.
    Zhu QL; Du C; Dai Y; Daab M; Matejdes M; Breu J; Hong W; Zheng Q; Wu ZL
    Nat Commun; 2020 Oct; 11(1):5166. PubMed ID: 33056999
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Thermo- and photo-responsive composite hydrogels with programmed deformations.
    Wang ZJ; Li CY; Zhao XY; Wu ZL; Zheng Q
    J Mater Chem B; 2019 Mar; 7(10):1674-1678. PubMed ID: 32254908
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Shear flow induced long-range ordering of rod-like viral nanoparticles within hydrogel.
    Wu Y; Jiang Z; Zan X; Lin Y; Wang Q
    Colloids Surf B Biointerfaces; 2017 Oct; 158():620-626. PubMed ID: 28755559
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Thermoresponsive Properties of PNIPAM-Based Hydrogels: Effect of Molecular Architecture and Embedded Gold Nanoparticles.
    Nguyen HH; Payré B; Fitremann J; Lauth-de Viguerie N; Marty JD
    Langmuir; 2015 Apr; 31(16):4761-8. PubMed ID: 25828438
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Reversible Snapping of Constrained Anisotropic Hydrogels Upon Light Stimulations.
    Dai CF; Zhu QL; Khoruzhenko O; Thelen M; Bai H; Breu J; Du M; Zheng Q; Wu ZL
    Adv Sci (Weinh); 2024 May; ():e2402824. PubMed ID: 38704682
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Stimuli-Responsive DNA-Based Hydrogels: From Basic Principles to Applications.
    Kahn JS; Hu Y; Willner I
    Acc Chem Res; 2017 Apr; 50(4):680-690. PubMed ID: 28248486
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Complex shape deformations of homogeneous poly(N-isopropylacrylamide)/graphene oxide hydrogels programmed by local NIR irradiation.
    Peng X; Liu T; Jiao C; Wu Y; Chen N; Wang H
    J Mater Chem B; 2017 Oct; 5(39):7997-8003. PubMed ID: 32264200
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A shape-shifting composite hydrogel sheet with spatially patterned plasmonic nanoparticles.
    Guo H; Liu Y; Yang Y; Wu G; Demella K; Raghavan SR; Nie Z
    J Mater Chem B; 2019 Mar; 7(10):1679-1683. PubMed ID: 32254909
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Tough and Thermosensitive Poly(N-isopropylacrylamide)/Graphene Oxide Hydrogels with Macroscopically Oriented Liquid Crystalline Structures.
    Zhu Z; Li Y; Xu H; Peng X; Chen YN; Shang C; Zhang Q; Liu J; Wang H
    ACS Appl Mater Interfaces; 2016 Jun; 8(24):15637-44. PubMed ID: 27254730
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Dynamic Manipulation of DNA-Programmed Crystals Embedded in a Polyelectrolyte Hydrogel.
    Kubiak JM; Morje AP; Lewis DJ; Wilson SL; Macfarlane RJ
    ACS Appl Mater Interfaces; 2021 Mar; 13(9):11215-11223. PubMed ID: 33645965
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ligament-Inspired Tough and Anisotropic Fibrous Gel Belt with Programed Shape Deformations
    Wei P; Chen T; Chen G; Hou K; Zhu M
    ACS Appl Mater Interfaces; 2021 Apr; 13(16):19291-19300. PubMed ID: 33852272
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Programmable Anisotropic Hydrogel Composites for Soft Bioelectronics.
    Fu L; Gao T; Zhao W; Hu S; Liu L; Shi Z; Huang J
    Macromol Biosci; 2022 Jun; 22(6):e2100467. PubMed ID: 35083860
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Programmable light-controlled shape changes in layered polymer nanocomposites.
    Zhu Z; Senses E; Akcora P; Sukhishvili SA
    ACS Nano; 2012 Apr; 6(4):3152-62. PubMed ID: 22452351
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Photolithographically Patterned Hydrogels with Programmed Deformations.
    Li CY; Hao XP; Wu ZL; Zheng Q
    Chem Asian J; 2019 Jan; 14(1):94-104. PubMed ID: 30239161
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Bioinspired Nanocomposite Hydrogels with Highly Ordered Structures.
    Zhao Z; Fang R; Rong Q; Liu M
    Adv Mater; 2017 Dec; 29(45):. PubMed ID: 29059482
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.