These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
188 related articles for article (PubMed ID: 33079485)
1. Design Strategy of Quantum Dot Thin-Film Solar Cells. Kim T; Lim S; Yun S; Jeong S; Park T; Choi J Small; 2020 Nov; 16(45):e2002460. PubMed ID: 33079485 [TBL] [Abstract][Full Text] [Related]
2. Photo-induced surface modification to improve the performance of lead sulfide quantum dot solar cell. Tulsani SR; Rath AK J Colloid Interface Sci; 2018 Jul; 522():120-125. PubMed ID: 29579563 [TBL] [Abstract][Full Text] [Related]
3. Improving the photovoltaic performance for PbS QD thin film solar cells through interface engineering. Yang Y; Rao Z; Xu Q; Liang Y; Yang L J Colloid Interface Sci; 2022 Dec; 627():562-568. PubMed ID: 35870408 [TBL] [Abstract][Full Text] [Related]
4. Nanotetrapods: quantum dot hybrid for bulk heterojunction solar cells. Tan F; Qu S; Li F; Jiang Q; Chen C; Zhang W; Wang Z Nanoscale Res Lett; 2013 Oct; 8(1):434. PubMed ID: 24139059 [TBL] [Abstract][Full Text] [Related]
5. CH Yin J; Yuan Y; Ni J; Guan J; Zhou X; Liu Y; Ding Y; Cai H; Zhang J ACS Appl Mater Interfaces; 2020 Oct; 12(43):48861-48873. PubMed ID: 33059441 [TBL] [Abstract][Full Text] [Related]
6. Efficient light harvesting in hybrid quantum dot-interdigitated back contact solar cells via resonant energy transfer and luminescent downshifting. Krishnan C; Mercier T; Rahman T; Piana G; Brossard M; Yagafarov T; To A; Pollard ME; Shaw P; Bagnall DM; Hoex B; Boden SA; Lagoudakis PG; Charlton MDB Nanoscale; 2019 Oct; 11(40):18837-18844. PubMed ID: 31595913 [TBL] [Abstract][Full Text] [Related]
7. Quantum Dot Based Solar Cells: Role of Nanoarchitectures, Perovskite Quantum Dots, and Charge-Transporting Layers. Shaikh JS; Shaikh NS; Mali SS; Patil JV; Beknalkar SA; Patil AP; Tarwal NL; Kanjanaboos P; Hong CK; Patil PS ChemSusChem; 2019 Nov; 12(21):4724-4753. PubMed ID: 31347771 [TBL] [Abstract][Full Text] [Related]
8. Stepwise-Process-Controlled Ligand Management Strategy for Efficient and Stable Perovskite Quantum Dot Solar Cells. Dai J; Guo W; Xu J; Xu R; Xi J; Dong H; Wu Z Nanomaterials (Basel); 2023 Nov; 13(23):. PubMed ID: 38063728 [TBL] [Abstract][Full Text] [Related]
9. Si solid-state quantum dot-based materials for tandem solar cells. Conibeer G; Perez-Wurfl I; Hao X; Di D; Lin D Nanoscale Res Lett; 2012 Mar; 7(1):193. PubMed ID: 22436303 [TBL] [Abstract][Full Text] [Related]
11. Semiconductor Nanocrystals as Light Harvesters in Solar Cells. Etgar L Materials (Basel); 2013 Feb; 6(2):445-459. PubMed ID: 28809318 [TBL] [Abstract][Full Text] [Related]
12. Recombination Suppression in PbS Quantum Dot Heterojunction Solar Cells by Energy-Level Alignment in the Quantum Dot Active Layers. Ding C; Zhang Y; Liu F; Nakazawa N; Huang Q; Hayase S; Ogomi Y; Toyoda T; Wang R; Shen Q ACS Appl Mater Interfaces; 2018 Aug; 10(31):26142-26152. PubMed ID: 28862833 [TBL] [Abstract][Full Text] [Related]
13. High efficiency perovskite quantum dot solar cells with charge separating heterostructure. Zhao Q; Hazarika A; Chen X; Harvey SP; Larson BW; Teeter GR; Liu J; Song T; Xiao C; Shaw L; Zhang M; Li G; Beard MC; Luther JM Nat Commun; 2019 Jun; 10(1):2842. PubMed ID: 31253800 [TBL] [Abstract][Full Text] [Related]
14. Engineering the Band Alignment in QD Heterojunction Films via Ligand Exchange. Grimaldi G; van den Brom MJ; du Fossé I; Crisp RW; Kirkwood N; Gudjonsdottir S; Geuchies JJ; Kinge S; Siebbeles LDA; Houtepen AJ J Phys Chem C Nanomater Interfaces; 2019 Dec; 123(49):29599-29608. PubMed ID: 31867087 [TBL] [Abstract][Full Text] [Related]
15. Improvement in PbS-based Hybrid Bulk-Heterojunction Solar Cells through Band Alignment via Bismuth Doping in the Nanocrystals. Saha SK; Bera A; Pal AJ ACS Appl Mater Interfaces; 2015 Apr; 7(16):8886-93. PubMed ID: 25853277 [TBL] [Abstract][Full Text] [Related]
16. Preventing interfacial recombination in colloidal quantum dot solar cells by doping the metal oxide. Ehrler B; Musselman KP; Böhm ML; Morgenstern FS; Vaynzof Y; Walker BJ; Macmanus-Driscoll JL; Greenham NC ACS Nano; 2013 May; 7(5):4210-20. PubMed ID: 23531107 [TBL] [Abstract][Full Text] [Related]
17. Thiol and Halometallate, Mutually Passivated Quantum Dot Ink for Photovoltaic Application. Mandal D; Goswami PN; Rath AK ACS Appl Mater Interfaces; 2019 Jul; 11(29):26100-26108. PubMed ID: 31257850 [TBL] [Abstract][Full Text] [Related]
18. Unusual Surface Ligand Doping-Induced p-Type Quantum Dot Solids and Their Application in Solar Cells. Meng L; Xu Q; Thakur UK; Gong L; Zeng H; Shankar K; Wang X ACS Appl Mater Interfaces; 2020 Dec; 12(48):53942-53949. PubMed ID: 33211957 [TBL] [Abstract][Full Text] [Related]
19. Electrochemical charging of CdSe quantum dot films: dependence on void size and counterion proximity. Boehme SC; Wang H; Siebbeles LD; Vanmaekelbergh D; Houtepen AJ ACS Nano; 2013 Mar; 7(3):2500-8. PubMed ID: 23398747 [TBL] [Abstract][Full Text] [Related]
20. Highly Efficient Inverted Structural Quantum Dot Solar Cells. Wang R; Wu X; Xu K; Zhou W; Shang Y; Tang H; Chen H; Ning Z Adv Mater; 2018 Feb; 30(7):. PubMed ID: 29315851 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]