BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

187 related articles for article (PubMed ID: 33079485)

  • 1. Design Strategy of Quantum Dot Thin-Film Solar Cells.
    Kim T; Lim S; Yun S; Jeong S; Park T; Choi J
    Small; 2020 Nov; 16(45):e2002460. PubMed ID: 33079485
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Photo-induced surface modification to improve the performance of lead sulfide quantum dot solar cell.
    Tulsani SR; Rath AK
    J Colloid Interface Sci; 2018 Jul; 522():120-125. PubMed ID: 29579563
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Improving the photovoltaic performance for PbS QD thin film solar cells through interface engineering.
    Yang Y; Rao Z; Xu Q; Liang Y; Yang L
    J Colloid Interface Sci; 2022 Dec; 627():562-568. PubMed ID: 35870408
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Nanotetrapods: quantum dot hybrid for bulk heterojunction solar cells.
    Tan F; Qu S; Li F; Jiang Q; Chen C; Zhang W; Wang Z
    Nanoscale Res Lett; 2013 Oct; 8(1):434. PubMed ID: 24139059
    [TBL] [Abstract][Full Text] [Related]  

  • 5. CH
    Yin J; Yuan Y; Ni J; Guan J; Zhou X; Liu Y; Ding Y; Cai H; Zhang J
    ACS Appl Mater Interfaces; 2020 Oct; 12(43):48861-48873. PubMed ID: 33059441
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Efficient light harvesting in hybrid quantum dot-interdigitated back contact solar cells via resonant energy transfer and luminescent downshifting.
    Krishnan C; Mercier T; Rahman T; Piana G; Brossard M; Yagafarov T; To A; Pollard ME; Shaw P; Bagnall DM; Hoex B; Boden SA; Lagoudakis PG; Charlton MDB
    Nanoscale; 2019 Oct; 11(40):18837-18844. PubMed ID: 31595913
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Quantum Dot Based Solar Cells: Role of Nanoarchitectures, Perovskite Quantum Dots, and Charge-Transporting Layers.
    Shaikh JS; Shaikh NS; Mali SS; Patil JV; Beknalkar SA; Patil AP; Tarwal NL; Kanjanaboos P; Hong CK; Patil PS
    ChemSusChem; 2019 Nov; 12(21):4724-4753. PubMed ID: 31347771
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Stepwise-Process-Controlled Ligand Management Strategy for Efficient and Stable Perovskite Quantum Dot Solar Cells.
    Dai J; Guo W; Xu J; Xu R; Xi J; Dong H; Wu Z
    Nanomaterials (Basel); 2023 Nov; 13(23):. PubMed ID: 38063728
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Si solid-state quantum dot-based materials for tandem solar cells.
    Conibeer G; Perez-Wurfl I; Hao X; Di D; Lin D
    Nanoscale Res Lett; 2012 Mar; 7(1):193. PubMed ID: 22436303
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ligand-dependent exciton dynamics and photovoltaic properties of PbS quantum dot heterojunction solar cells.
    Chang J; Ogomi Y; Ding C; Zhang YH; Toyoda T; Hayase S; Katayama K; Shen Q
    Phys Chem Chem Phys; 2017 Mar; 19(9):6358-6367. PubMed ID: 27901148
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Semiconductor Nanocrystals as Light Harvesters in Solar Cells.
    Etgar L
    Materials (Basel); 2013 Feb; 6(2):445-459. PubMed ID: 28809318
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Recombination Suppression in PbS Quantum Dot Heterojunction Solar Cells by Energy-Level Alignment in the Quantum Dot Active Layers.
    Ding C; Zhang Y; Liu F; Nakazawa N; Huang Q; Hayase S; Ogomi Y; Toyoda T; Wang R; Shen Q
    ACS Appl Mater Interfaces; 2018 Aug; 10(31):26142-26152. PubMed ID: 28862833
    [TBL] [Abstract][Full Text] [Related]  

  • 13. High efficiency perovskite quantum dot solar cells with charge separating heterostructure.
    Zhao Q; Hazarika A; Chen X; Harvey SP; Larson BW; Teeter GR; Liu J; Song T; Xiao C; Shaw L; Zhang M; Li G; Beard MC; Luther JM
    Nat Commun; 2019 Jun; 10(1):2842. PubMed ID: 31253800
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Engineering the Band Alignment in QD Heterojunction Films via Ligand Exchange.
    Grimaldi G; van den Brom MJ; du Fossé I; Crisp RW; Kirkwood N; Gudjonsdottir S; Geuchies JJ; Kinge S; Siebbeles LDA; Houtepen AJ
    J Phys Chem C Nanomater Interfaces; 2019 Dec; 123(49):29599-29608. PubMed ID: 31867087
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Improvement in PbS-based Hybrid Bulk-Heterojunction Solar Cells through Band Alignment via Bismuth Doping in the Nanocrystals.
    Saha SK; Bera A; Pal AJ
    ACS Appl Mater Interfaces; 2015 Apr; 7(16):8886-93. PubMed ID: 25853277
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Preventing interfacial recombination in colloidal quantum dot solar cells by doping the metal oxide.
    Ehrler B; Musselman KP; Böhm ML; Morgenstern FS; Vaynzof Y; Walker BJ; Macmanus-Driscoll JL; Greenham NC
    ACS Nano; 2013 May; 7(5):4210-20. PubMed ID: 23531107
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Thiol and Halometallate, Mutually Passivated Quantum Dot Ink for Photovoltaic Application.
    Mandal D; Goswami PN; Rath AK
    ACS Appl Mater Interfaces; 2019 Jul; 11(29):26100-26108. PubMed ID: 31257850
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Unusual Surface Ligand Doping-Induced p-Type Quantum Dot Solids and Their Application in Solar Cells.
    Meng L; Xu Q; Thakur UK; Gong L; Zeng H; Shankar K; Wang X
    ACS Appl Mater Interfaces; 2020 Dec; 12(48):53942-53949. PubMed ID: 33211957
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Electrochemical charging of CdSe quantum dot films: dependence on void size and counterion proximity.
    Boehme SC; Wang H; Siebbeles LD; Vanmaekelbergh D; Houtepen AJ
    ACS Nano; 2013 Mar; 7(3):2500-8. PubMed ID: 23398747
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Highly Efficient Inverted Structural Quantum Dot Solar Cells.
    Wang R; Wu X; Xu K; Zhou W; Shang Y; Tang H; Chen H; Ning Z
    Adv Mater; 2018 Feb; 30(7):. PubMed ID: 29315851
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.