These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

196 related articles for article (PubMed ID: 33079527)

  • 21. Oxygen Electrode PrBa
    Bai H; Zhang Y; Chu J; Zhou Q; Lan H; Zhou J
    ACS Appl Mater Interfaces; 2023 Aug; 15(32):38581-38591. PubMed ID: 37535454
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Improved mechanical strength, proton conductivity and power density in an 'all-protonic' ceramic fuel cell at intermediate temperature.
    Azad AK; Abdalla AM; Afif A; Azad A; Afroze S; Idris AC; Park JY; Saqib M; Radenahmad N; Hossain S; Elius IB; Al-Mamun M; Zaini J; Al-Hinai A; Reza MS; Irvine JTS
    Sci Rep; 2021 Sep; 11(1):19382. PubMed ID: 34588598
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Is the surface oxygen exchange rate linked to bulk ion diffusivity in mixed conducting Ruddlesden-Popper phases?
    Tomkiewicz AC; Tamimi MA; Huq A; McIntosh S
    Faraday Discuss; 2015; 182():113-27. PubMed ID: 26206617
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Rational Design of Ruddlesden-Popper Perovskite Ferrites as Air Electrode for Highly Active and Durable Reversible Protonic Ceramic Cells.
    Yu N; Bello IT; Chen X; Liu T; Li Z; Song Y; Ni M
    Nanomicro Lett; 2024 Apr; 16(1):177. PubMed ID: 38647738
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Samples of Ba
    Dudek M; Lis B; Lach R; Daugėla S; Šalkus T; Kežionis A; Mosiałek M; Sitarz M; Rapacz-Kmita A; Grzywacz P
    Materials (Basel); 2020 Apr; 13(8):. PubMed ID: 32316311
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Building Ruddlesden-Popper and Single Perovskite Nanocomposites: A New Strategy to Develop High-Performance Cathode for Protonic Ceramic Fuel Cells.
    Shi H; Su C; Xu X; Pan Y; Yang G; Ran R; Shao Z
    Small; 2021 Sep; 17(35):e2101872. PubMed ID: 34254432
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Harnessing High-Throughput Computational Methods to Accelerate the Discovery of Optimal Proton Conductors for High-Performance and Durable Protonic Ceramic Electrochemical Cells.
    Luo Z; Hu X; Zhou Y; Ding Y; Zhang W; Li T; Liu M
    Adv Mater; 2024 May; 36(18):e2311159. PubMed ID: 38251928
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Layered Perovskites BaLn
    Tarasova N
    Membranes (Basel); 2022 Dec; 13(1):. PubMed ID: 36676841
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Tri-Doped BaCeO
    Rajendran S; Thangavel NK; Ding H; Ding Y; Ding D; Reddy Arava LM
    ACS Appl Mater Interfaces; 2020 Aug; 12(34):38275-38284. PubMed ID: 32786238
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Enhanced Performance of Protonic Solid Oxide Steam Electrolysis Cell of Zr-Rich Side BaZr
    Toriumi H; Jeong S; Kitano S; Habazaki H; Aoki Y
    ACS Omega; 2022 Mar; 7(11):9944-9950. PubMed ID: 35350337
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Double perovskite cathodes for proton-conducting ceramic fuel cells: are they triple mixed ionic electronic conductors?
    Téllez Lozano H; Druce J; Cooper SJ; Kilner JA
    Sci Technol Adv Mater; 2017; 18(1):977-986. PubMed ID: 29383047
    [No Abstract]   [Full Text] [Related]  

  • 32. Interfacial Modification for High-Efficient Reversible Protonic Ceramic Cell with a Spin-Coated BaZr
    Chen J; Lu X; Zhang J; Zhao X; Liu W; Zhang J; Shao T; Zhao Y; Li Y
    ACS Appl Mater Interfaces; 2024 Oct; 16(39):52200-52209. PubMed ID: 39305270
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Materials A
    Tarasova N; Animitsa I
    Materials (Basel); 2021 Dec; 15(1):. PubMed ID: 35009259
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Electrokinetic Proton Transport in Triple (H
    Seong A; Kim J; Jeong D; Sengodan S; Liu M; Choi S; Kim G
    Adv Sci (Weinh); 2021 Jun; 8(11):e2004099. PubMed ID: 34105272
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Layered Perovskites BaM
    Tarasova N; Galisheva A; Animitsa I; Belova K; Egorova A; Abakumova E; Medvedev D
    Materials (Basel); 2022 May; 15(10):. PubMed ID: 35629516
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Electrochemical Approach for Analyzing Electrolyte Transport Properties and Their Effect on Protonic Ceramic Fuel Cell Performance.
    Danilov N; Lyagaeva J; Vdovin G; Medvedev D; Demin A; Tsiakaras P
    ACS Appl Mater Interfaces; 2017 Aug; 9(32):26874-26884. PubMed ID: 28763200
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Surface and Bulk Oxygen Kinetics of BaCo
    Duffy JH; Meng Y; Abernathy HW; Brinkman KS
    Membranes (Basel); 2021 Oct; 11(10):. PubMed ID: 34677532
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Design of Mixed Ionic-Electronic Materials for Permselective Membranes and Solid Oxide Fuel Cells Based on Their Oxygen and Hydrogen Mobility.
    Sadykov V; Pikalova E; Sadovskaya E; Shlyakhtina A; Filonova E; Eremeev N
    Membranes (Basel); 2023 Jul; 13(8):. PubMed ID: 37623759
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Modulating Lattice Oxygen Activity of Iron-Based Triple-Conducting Nanoheterostructure Air Electrode via Sc-Substitution Strategy for Protonic Ceramic Cells.
    Wang Z; Wang Y; Xiao Y; Zhang Y; Wang X; Wang F; He T
    Small; 2024 Aug; 20(31):e2312148. PubMed ID: 38438906
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Atomic mapping of Ruddlesden-Popper faults in transparent conducting BaSnO3-based thin films.
    Wang WY; Tang YL; Zhu YL; Suriyaprakash J; Xu YB; Liu Y; Gao B; Cheong SW; Ma XL
    Sci Rep; 2015 Nov; 5():16097. PubMed ID: 26526665
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.