BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

416 related articles for article (PubMed ID: 33079528)

  • 1. High-Efficiency Electrolyte for Li-Rich Cathode Materials Achieving Enhanced Cycle Stability and Suppressed Voltage Fading Capable of Practical Applications on a Li-Ion Battery.
    Song D; Sun X; Niu Q; Zhao Q; Wang C; Yang L; Wu Y; Li M; Ohsaka T; Matsumotoc F; Wu J
    ACS Appl Mater Interfaces; 2020 Nov; 12(44):49666-49679. PubMed ID: 33079528
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Dilute Electrolyte to Mitigate Capacity Decay and Voltage Fading of Co-Free Li-Rich Cathode for Next-Generation Li-Ion Batteries.
    Song D; Yang Z; Zhao Q; Sun X; Wu Y; Zhang Y; Gao J; Wang C; Yang L; Ohsaka T; Matsumoto F; Wu J
    ACS Appl Mater Interfaces; 2022 Mar; 14(10):12264-12275. PubMed ID: 35239325
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Encouraging Voltage Stability upon Long Cycling of Li-Rich Mn-Based Cathode Materials by Ta-Mo Dual Doping.
    Yang J; Chen Y; Li Y; Xi X; Zheng J; Zhu Y; Xiong Y; Liu S
    ACS Appl Mater Interfaces; 2021 Jun; 13(22):25981-25992. PubMed ID: 34039001
    [TBL] [Abstract][Full Text] [Related]  

  • 4. In Situ Electrochemical Polymerization of Cathode Electrolyte Interphase Enabling High-Performance Lithium Metal Batteries.
    Sun S; Yu J; Ma X; Fang P; Yang M; Yang J; Wu M; Hu Y; Yan F
    Small; 2024 Jun; ():e2403145. PubMed ID: 38881358
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Stable Operation Induced by Plastic Crystal Electrolyte Used in Ni-Rich NMC811 Cathodes for Li-Ion Batteries.
    Jabeen M; Ren Z; Ishaq M; Yuan S; Bao X; Shu C; Liu X; Liu X; Li L; He YS; Ma ZF; Liao XZ
    ACS Appl Mater Interfaces; 2023 Oct; ():. PubMed ID: 37890042
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Alleviating Surface Degradation of Nickel-Rich Layered Oxide Cathode Material by Encapsulating with Nanoscale Li-Ions/Electrons Superionic Conductors Hybrid Membrane for Advanced Li-Ion Batteries.
    Li L; Xu M; Yao Q; Chen Z; Song L; Zhang Z; Gao C; Wang P; Yu Z; Lai Y
    ACS Appl Mater Interfaces; 2016 Nov; 8(45):30879-30889. PubMed ID: 27805812
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Corrosion/fragmentation of layered composite cathode and related capacity/voltage fading during cycling process.
    Zheng J; Gu M; Xiao J; Zuo P; Wang C; Zhang JG
    Nano Lett; 2013 Aug; 13(8):3824-30. PubMed ID: 23802657
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Enhancing the Electrochemical Performance of a High-Voltage LiNi
    Tan C; Wang N; Pan Q; Li Y; Li Y; Ji Q; Fan X; Zheng F; Wang H; Li Q
    Chemistry; 2020 Sep; 26(53):12233-12241. PubMed ID: 32472722
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Improving electrochemical performances of Lithium-rich oxide by cooperatively doping Cr and coating Li
    Tai Z; Zhu W; Shi M; Xin Y; Guo S; Wu Y; Chen Y; Liu Y
    J Colloid Interface Sci; 2020 Sep; 576():468-475. PubMed ID: 32473416
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Suppressing the Voltage Decay Based on a Distinct Stacking Sequence of Oxygen Atoms for Li-Rich Cathode Materials.
    Cao S; Wu C; Xie X; Li H; Zang Z; Li Z; Chen G; Guo X; Wang X
    ACS Appl Mater Interfaces; 2021 Apr; 13(15):17639-17648. PubMed ID: 33825459
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Nb
    Liu Y; Yang R; Li X; Yang W; Lin Y; Zhang G; Wang L
    Molecules; 2023 May; 28(9):. PubMed ID: 37175303
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Electrolyte Regulation in Stabilizing the Interface of a Cobalt-Free Layered Cathode for 4.8 V High-Voltage Lithium-Ion Batteries.
    Ma M; Zhu Z; Yang D; Qie L; Huang Z; Huang Y
    ACS Appl Mater Interfaces; 2024 Mar; 16(10):12554-12562. PubMed ID: 38422353
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Formation of LiF-rich Cathode-Electrolyte Interphase by Electrolyte Reduction.
    Bai P; Ji X; Zhang J; Zhang W; Hou S; Su H; Li M; Deng T; Cao L; Liu S; He X; Xu Y; Wang C
    Angew Chem Int Ed Engl; 2022 Jun; 61(26):e202202731. PubMed ID: 35395115
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Structure and Interface Design Enable Stable Li-Rich Cathode.
    Cui C; Fan X; Zhou X; Chen J; Wang Q; Ma L; Yang C; Hu E; Yang XQ; Wang C
    J Am Chem Soc; 2020 May; 142(19):8918-8927. PubMed ID: 32319764
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Tunable and robust phosphite-derived surface film to protect lithium-rich cathodes in lithium-ion batteries.
    Han JG; Lee SJ; Lee J; Kim JS; Lee KT; Choi NS
    ACS Appl Mater Interfaces; 2015 Apr; 7(15):8319-29. PubMed ID: 25822879
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Armor-like Inorganic-rich Cathode Electrolyte Interphase Enabled by the Pentafluorophenylboronic Acid Additive for High-voltage Li||NCM622 Batteries.
    Yang Y; Wang H; Zhu C; Ma J
    Angew Chem Int Ed Engl; 2023 May; 62(22):e202300057. PubMed ID: 36929622
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Enhanced Electrochemical Performance of the Lithium-Manganese-Rich Cathode for Li-Ion Batteries with Na and F CoDoping.
    Vanaphuti P; Chen J; Cao J; Bigham K; Chen B; Yang L; Chen H; Wang Y
    ACS Appl Mater Interfaces; 2019 Oct; 11(41):37842-37849. PubMed ID: 31560196
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Critical Review on cathode-electrolyte Interphase Toward High-Voltage Cathodes for Li-Ion Batteries.
    Xu J
    Nanomicro Lett; 2022 Aug; 14(1):166. PubMed ID: 35974213
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Multiscale Deficiency Integration by Na-Rich Engineering for High-Stability Li-Rich Layered Oxide Cathodes.
    Liu Q; Xie T; Xie Q; He W; Zhang Y; Zheng H; Lu X; Wei W; Sa B; Wang L; Peng DL
    ACS Appl Mater Interfaces; 2021 Feb; 13(7):8239-8248. PubMed ID: 33555872
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Phosphate and Borate-Based Composite Interface of Single-Crystal LiNi
    Long F; Liu Y; Zhu G; Wang Y; Zheng H
    Materials (Basel); 2023 May; 16(10):. PubMed ID: 37241239
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 21.