These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

144 related articles for article (PubMed ID: 33079550)

  • 1. Electro-Ionic Control of Surface Plasmons in Graphene-Layered Heterostructures.
    Pae JY; Medwal R; Nair RV; Chaurasiya A; Battiato M; Rawat RS; Matham MV
    Nano Lett; 2020 Nov; 20(11):8305-8311. PubMed ID: 33079550
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ion-Gel-Gated Graphene Optical Modulator with Hysteretic Behavior.
    Kim JT; Choi H; Choi Y; Cho JH
    ACS Appl Mater Interfaces; 2018 Jan; 10(2):1836-1845. PubMed ID: 29264919
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Study of graphene plasmons in graphene-MoS
    Liu R; Liao B; Guo X; Hu D; Hu H; Du L; Yu H; Zhang G; Yang X; Dai Q
    Nanoscale; 2017 Jan; 9(1):208-215. PubMed ID: 27906405
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Low-dimensional gap plasmons for enhanced light-graphene interactions.
    Kim Y; Yu S; Park N
    Sci Rep; 2017 Feb; 7():43333. PubMed ID: 28240230
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Optical nano-imaging of gate-tunable graphene plasmons.
    Chen J; Badioli M; Alonso-González P; Thongrattanasiri S; Huth F; Osmond J; Spasenović M; Centeno A; Pesquera A; Godignon P; Elorza AZ; Camara N; García de Abajo FJ; Hillenbrand R; Koppens FH
    Nature; 2012 Jul; 487(7405):77-81. PubMed ID: 22722861
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Broadly tunable graphene plasmons using an ion-gel top gate with low control voltage.
    Hu H; Zhai F; Hu D; Li Z; Bai B; Yang X; Dai Q
    Nanoscale; 2015 Dec; 7(46):19493-500. PubMed ID: 26530788
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Flexible and Electrically Tunable Plasmons in Graphene-Mica Heterostructures.
    Hu H; Guo X; Hu D; Sun Z; Yang X; Dai Q
    Adv Sci (Weinh); 2018 Aug; 5(8):1800175. PubMed ID: 30128236
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Graphene Nanoribbon Gap Waveguides for Dispersionless and Low-Loss Propagation with Deep-Subwavelength Confinement.
    Wu Z; Zhang L; Ning T; Su H; Li IL; Ruan S; Zeng YJ; Liang H
    Nanomaterials (Basel); 2021 May; 11(5):. PubMed ID: 34069185
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Tunable graphene-based hybrid plasmonic modulators for subwavelength confinement.
    Qu S; Ma C; Liu H
    Sci Rep; 2017 Jul; 7(1):5190. PubMed ID: 28701717
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Electrically and Optically Tunable Responses in Graphene/Transition-Metal-Dichalcogenide Heterostructures.
    Zhao M; Song P; Teng J
    ACS Appl Mater Interfaces; 2018 Dec; 10(50):44102-44108. PubMed ID: 30479118
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Efficient electro-optic modulation in low-loss graphene-plasmonic slot waveguides.
    Ding Y; Guan X; Zhu X; Hu H; Bozhevolnyi SI; Oxenløwe LK; Jin KJ; Mortensen NA; Xiao S
    Nanoscale; 2017 Oct; 9(40):15576-15581. PubMed ID: 28984878
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Microcavity-integrated graphene waveguide: a reconfigurable electro-optical attenuator and switch.
    Sui G; Wu J; Zhang Y; Yin C; Gao X
    Sci Rep; 2018 Aug; 8(1):12445. PubMed ID: 30127385
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Tuneable strong optical absorption in a graphene-insulator-metal hybrid plasmonic device.
    Matthaiakakis N; Yan X; Mizuta H; Charlton MDB
    Sci Rep; 2017 Aug; 7(1):7303. PubMed ID: 28779106
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Highly confined low-loss plasmons in graphene-boron nitride heterostructures.
    Woessner A; Lundeberg MB; Gao Y; Principi A; Alonso-González P; Carrega M; Watanabe K; Taniguchi T; Vignale G; Polini M; Hone J; Hillenbrand R; Koppens FH
    Nat Mater; 2015 Apr; 14(4):421-5. PubMed ID: 25532073
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ultracompact electro-optic waveguide modulator based on a graphene-covered λ/1000 plasmonic nanogap.
    Kim S; Menabde SG; Cox JD; Low T; Jang MS
    Opt Express; 2021 Apr; 29(9):13852-13863. PubMed ID: 33985113
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Localized surface plasmons in vibrating graphene nanodisks.
    Wang W; Li BH; Stassen E; Mortensen NA; Christensen J
    Nanoscale; 2016 Feb; 8(6):3809-15. PubMed ID: 26815600
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Controlling graphene plasmons with a zero-index metasurface.
    Lin L; Lu Y; Yuan M; Shi F; Xu H; Chen Y
    Nanoscale; 2017 Nov; 9(46):18482-18489. PubMed ID: 29160326
    [TBL] [Abstract][Full Text] [Related]  

  • 18. In-plane electric field confinement engineering in graphene-based hybrid plasmonic waveguides.
    Wang B; Blaize S; Kim S; Yang H; Salas-Montiel R
    Appl Opt; 2019 Sep; 58(27):7503-7509. PubMed ID: 31674401
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Hybrid phonon-polaritons at atomically-thin van der Waals heterointerfaces for infrared optical modulation.
    Zhang Q; Zhen Z; Yang Y; Gan G; Jariwala D; Cui X
    Opt Express; 2019 Jun; 27(13):18585-18600. PubMed ID: 31252799
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Analysis of graphene TE surface plasmons in the terahertz regime.
    He XY; Tao J; Meng B
    Nanotechnology; 2013 Aug; 24(34):345203. PubMed ID: 23912303
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.