BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

88 related articles for article (PubMed ID: 33080159)

  • 1. Flexible Working Memory Through Selective Gating and Attentional Tagging.
    Kruijne W; Bohte SM; Roelfsema PR; Olivers CNL
    Neural Comput; 2021 Jan; 33(1):1-40. PubMed ID: 33080159
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Recurrent neural networks that learn multi-step visual routines with reinforcement learning.
    Mollard S; Wacongne C; Bohte SM; Roelfsema PR
    PLoS Comput Biol; 2024 Apr; 20(4):e1012030. PubMed ID: 38683837
    [TBL] [Abstract][Full Text] [Related]  

  • 3. How attention can create synaptic tags for the learning of working memories in sequential tasks.
    Rombouts JO; Bohte SM; Roelfsema PR
    PLoS Comput Biol; 2015 Mar; 11(3):e1004060. PubMed ID: 25742003
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Neural learning rules for generating flexible predictions and computing the successor representation.
    Fang C; Aronov D; Abbott LF; Mackevicius EL
    Elife; 2023 Mar; 12():. PubMed ID: 36928104
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Circuit mechanisms for the maintenance and manipulation of information in working memory.
    Masse NY; Yang GR; Song HF; Wang XJ; Freedman DJ
    Nat Neurosci; 2019 Jul; 22(7):1159-1167. PubMed ID: 31182866
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A recurrent neural network framework for flexible and adaptive decision making based on sequence learning.
    Zhang Z; Cheng H; Yang T
    PLoS Comput Biol; 2020 Nov; 16(11):e1008342. PubMed ID: 33141824
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A modeling framework for adaptive lifelong learning with transfer and savings through gating in the prefrontal cortex.
    Tsuda B; Tye KM; Siegelmann HT; Sejnowski TJ
    Proc Natl Acad Sci U S A; 2020 Nov; 117(47):29872-29882. PubMed ID: 33154155
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Neural mechanisms of attending to items in working memory.
    Manohar SG; Zokaei N; Fallon SJ; Vogels TP; Husain M
    Neurosci Biobehav Rev; 2019 Jun; 101():1-12. PubMed ID: 30922977
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Low-dimensional dynamics for working memory and time encoding.
    Cueva CJ; Saez A; Marcos E; Genovesio A; Jazayeri M; Romo R; Salzman CD; Shadlen MN; Fusi S
    Proc Natl Acad Sci U S A; 2020 Sep; 117(37):23021-23032. PubMed ID: 32859756
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Engineering recurrent neural networks from task-relevant manifolds and dynamics.
    Pollock E; Jazayeri M
    PLoS Comput Biol; 2020 Aug; 16(8):e1008128. PubMed ID: 32785228
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Internal attention modulates the functional state of novel stimulus-response associations in working memory.
    Formica S; Palenciano AF; Vermeylen L; Myers NE; Brass M; González-García C
    Cognition; 2024 Apr; 245():105739. PubMed ID: 38340528
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Analogous computations in working memory input, output and motor gating: Electrophysiological and computational modeling evidence.
    Rac-Lubashevsky R; Frank MJ
    PLoS Comput Biol; 2021 Jun; 17(6):e1008971. PubMed ID: 34097689
    [TBL] [Abstract][Full Text] [Related]  

  • 13. From fixed points to chaos: three models of delayed discrimination.
    Barak O; Sussillo D; Romo R; Tsodyks M; Abbott LF
    Prog Neurobiol; 2013 Apr; 103():214-22. PubMed ID: 23438479
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Reinforcement learning on slow features of high-dimensional input streams.
    Legenstein R; Wilbert N; Wiskott L
    PLoS Comput Biol; 2010 Aug; 6(8):. PubMed ID: 20808883
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Perirhinal cortex learns a predictive map of the task environment.
    Lee DG; McLachlan CA; Nogueira R; Kwon O; Carey AE; House G; Lagani GD; LaMay D; Fusi S; Chen JL
    Nat Commun; 2024 Jul; 15(1):5544. PubMed ID: 38956015
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Temporal encoding in deep reinforcement learning agents.
    Lin D; Huang AZ; Richards BA
    Sci Rep; 2023 Dec; 13(1):22335. PubMed ID: 38102369
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Reversal Learning in Humans and Gerbils: Dynamic Control Network Facilitates Learning.
    Jarvers C; Brosch T; Brechmann A; Woldeit ML; Schulz AL; Ohl FW; Lommerzheim M; Neumann H
    Front Neurosci; 2016; 10():535. PubMed ID: 27909395
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Reward-predictive representations generalize across tasks in reinforcement learning.
    Lehnert L; Littman ML; Frank MJ
    PLoS Comput Biol; 2020 Oct; 16(10):e1008317. PubMed ID: 33057329
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Embodied working memory during ongoing input streams.
    Berberian N; Ross M; Chartier S
    PLoS One; 2021; 16(1):e0244822. PubMed ID: 33400724
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Heterogeneous Forgetting Rates and Greedy Allocation in Slot-Based Memory Networks Promotes Signal Retention.
    Jones B; Snyder L; Ching S
    Neural Comput; 2024 Apr; 36(5):1022-1040. PubMed ID: 38658026
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.