BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

155 related articles for article (PubMed ID: 33080164)

  • 1. Efficient Actor-Critic Reinforcement Learning With Embodiment of Muscle Tone for Posture Stabilization of the Human Arm.
    Iwamoto M; Kato D
    Neural Comput; 2021 Jan; 33(1):129-156. PubMed ID: 33080164
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The role of multisensor data fusion in neuromuscular control of a sagittal arm with a pair of muscles using actor-critic reinforcement learning method.
    Golkhou V; Parnianpour M; Lucas C
    Technol Health Care; 2004; 12(6):425-38. PubMed ID: 15671597
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Meta attention for Off-Policy Actor-Critic.
    Huang J; Huang W; Lan L; Wu D
    Neural Netw; 2023 Jun; 163():86-96. PubMed ID: 37030278
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Training an Actor-Critic Reinforcement Learning Controller for Arm Movement Using Human-Generated Rewards.
    Jagodnik KM; Thomas PS; van den Bogert AJ; Branicky MS; Kirsch RF
    IEEE Trans Neural Syst Rehabil Eng; 2017 Oct; 25(10):1892-1905. PubMed ID: 28475063
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Neuromuscular control of the point to point and oscillatory movements of a sagittal arm with the actor-critic reinforcement learning method.
    Golkhou V; Parnianpour M; Lucas C
    Comput Methods Biomech Biomed Engin; 2005 Apr; 8(2):103-13. PubMed ID: 16154874
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Brain-Machine Interface control of a robot arm using actor-critic rainforcement learning.
    Pohlmeyer EA; Mahmoudi B; Geng S; Prins N; Sanchez JC
    Annu Int Conf IEEE Eng Med Biol Soc; 2012; 2012():4108-11. PubMed ID: 23366831
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Basal ganglia efferents to the brainstem centers controlling postural muscle tone and locomotion: a new concept for understanding motor disorders in basal ganglia dysfunction.
    Takakusaki K; Habaguchi T; Ohtinata-Sugimoto J; Saitoh K; Sakamoto T
    Neuroscience; 2003; 119(1):293-308. PubMed ID: 12763089
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Learning arm's posture control using reinforcement learning and feedback-error-learning.
    Kambara H; Kim J; Sato M; Koike Y
    Conf Proc IEEE Eng Med Biol Soc; 2004; 2006():486-9. PubMed ID: 17271719
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Actor-critic models of the basal ganglia: new anatomical and computational perspectives.
    Joel D; Niv Y; Ruppin E
    Neural Netw; 2002; 15(4-6):535-47. PubMed ID: 12371510
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The Intelligent Path Planning System of Agricultural Robot via Reinforcement Learning.
    Yang J; Ni J; Li Y; Wen J; Chen D
    Sensors (Basel); 2022 Jun; 22(12):. PubMed ID: 35746099
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Generating Human Arm Kinematics Using Reinforcement Learning to Train Active Muscle Behavior in Automotive Research.
    Mukherjee S; Perez-Rapela D; Forman JL; Panzer MB
    J Biomech Eng; 2022 Dec; 144(12):. PubMed ID: 36128755
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Analysis of abnormal posture in patients with Parkinson's disease using a computational model considering muscle tones.
    Omura Y; Togo H; Kaminishi K; Hasegawa T; Chiba R; Yozu A; Takakusaki K; Abe M; Takahashi Y; Hanakawa T; Ota J
    Front Comput Neurosci; 2023; 17():1218707. PubMed ID: 37867918
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Human locomotion with reinforcement learning using bioinspired reward reshaping strategies.
    Nowakowski K; Carvalho P; Six JB; Maillet Y; Nguyen AT; Seghiri I; M'Pemba L; Marcille T; Ngo ST; Dao TT
    Med Biol Eng Comput; 2021 Jan; 59(1):243-256. PubMed ID: 33417125
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A novel approach to locomotion learning: Actor-Critic architecture using central pattern generators and dynamic motor primitives.
    Li C; Lowe R; Ziemke T
    Front Neurorobot; 2014; 8():23. PubMed ID: 25324773
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Postural muscle tone in the body axis of healthy humans.
    Gurfinkel V; Cacciatore TW; Cordo P; Horak F; Nutt J; Skoss R
    J Neurophysiol; 2006 Nov; 96(5):2678-87. PubMed ID: 16837660
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Development of low postural tone compensatory patterns in children - theoretical basis.
    Gogola A; Saulicz E; Kuszewski M; Matyja M; Myƛliwiec A
    Dev Period Med; 2014; 18(3):374-9. PubMed ID: 25182403
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Energy-efficient and damage-recovery slithering gait design for a snake-like robot based on reinforcement learning and inverse reinforcement learning.
    Bing Z; Lemke C; Cheng L; Huang K; Knoll A
    Neural Netw; 2020 Sep; 129():323-333. PubMed ID: 32593929
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Reinforcement learning for automatic quadrilateral mesh generation: A soft actor-critic approach.
    Pan J; Huang J; Cheng G; Zeng Y
    Neural Netw; 2023 Jan; 157():288-304. PubMed ID: 36375347
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Human resting muscle tone (HRMT): narrative introduction and modern concepts.
    Masi AT; Hannon JC
    J Bodyw Mov Ther; 2008 Oct; 12(4):320-32. PubMed ID: 19083691
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Threshold control of arm posture and movement adaptation to load.
    Foisy M; Feldman AG
    Exp Brain Res; 2006 Nov; 175(4):726-44. PubMed ID: 16847611
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.