These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

154 related articles for article (PubMed ID: 33080164)

  • 21. Reinforcement learning of motor skills with policy gradients.
    Peters J; Schaal S
    Neural Netw; 2008 May; 21(4):682-97. PubMed ID: 18482830
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Modulatory effect of repetitive peripheral magnetic stimulation on skeletal muscle tone in healthy subjects: stabilization of the elbow joint.
    Struppler A; Angerer B; Gündisch C; Havel P
    Exp Brain Res; 2004 Jul; 157(1):59-66. PubMed ID: 15309359
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Brainstem control of locomotion and muscle tone with special reference to the role of the mesopontine tegmentum and medullary reticulospinal systems.
    Takakusaki K; Chiba R; Nozu T; Okumura T
    J Neural Transm (Vienna); 2016 Jul; 123(7):695-729. PubMed ID: 26497023
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Actor-Critic Reinforcement Learning Based Algorithm for Contaminant Type Identification in Surface Electromyography Data
    Tosin MC; Bagesteiro LB; Balbinot A
    Annu Int Conf IEEE Eng Med Biol Soc; 2021 Nov; 2021():186-189. PubMed ID: 34891268
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Impulse control disorders in Parkinson's disease are associated with dysfunction in stimulus valuation but not action valuation.
    Piray P; Zeighami Y; Bahrami F; Eissa AM; Hewedi DH; Moustafa AA
    J Neurosci; 2014 Jun; 34(23):7814-24. PubMed ID: 24899705
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Characterizing Motor Control of Mastication With Soft Actor-Critic.
    Abdi AH; Sagl B; Srungarapu VP; Stavness I; Prisman E; Abolmaesumi P; Fels S
    Front Hum Neurosci; 2020; 14():188. PubMed ID: 32528267
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Equivariant Graph-Representation-Based Actor-Critic Reinforcement Learning for Nanoparticle Design.
    Elsborg J; Bhowmik A
    J Chem Inf Model; 2023 Jun; 63(12):3731-3741. PubMed ID: 37276140
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Humanoids Learning to Walk: A Natural CPG-Actor-Critic Architecture.
    Li C; Lowe R; Ziemke T
    Front Neurorobot; 2013; 7():5. PubMed ID: 23675345
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Analysis of the Relationship Between Muscle Tones and Abnormal Postures in a Computational Model.
    Omura Y; Togo H; Kaminishi K; Hasegawa T; Chiba R; Yozu A; Takakusaki K; Abe M; Takahashi Y; Hanakawa T; Ota J
    Annu Int Conf IEEE Eng Med Biol Soc; 2023 Jul; 2023():1-4. PubMed ID: 38083325
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Adaptive Quadruped Balance Control for Dynamic Environments Using Maximum-Entropy Reinforcement Learning.
    Sun H; Fu T; Ling Y; He C
    Sensors (Basel); 2021 Sep; 21(17):. PubMed ID: 34502796
    [TBL] [Abstract][Full Text] [Related]  

  • 31. BGRL: Basal Ganglia inspired Reinforcement Learning based framework for deep brain stimulators.
    Agarwal H; Rathore H
    Artif Intell Med; 2024 Jan; 147():102736. PubMed ID: 38184360
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Supervised-actor-critic reinforcement learning for intelligent mechanical ventilation and sedative dosing in intensive care units.
    Yu C; Ren G; Dong Y
    BMC Med Inform Decis Mak; 2020 Jul; 20(Suppl 3):124. PubMed ID: 32646412
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Online human training of a myoelectric prosthesis controller via actor-critic reinforcement learning.
    Pilarski PM; Dawson MR; Degris T; Fahimi F; Carey JP; Sutton RS
    IEEE Int Conf Rehabil Robot; 2011; 2011():5975338. PubMed ID: 22275543
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Reinforcement learning for stabilizing an inverted pendulum naturally leads to intermittent feedback control as in human quiet standing.
    Michimoto K; Suzuki Y; Kiyono K; Kobayashi Y; Morasso P; Nomura T
    Annu Int Conf IEEE Eng Med Biol Soc; 2016 Aug; 2016():37-40. PubMed ID: 28268275
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Realistic Actor-Critic: A framework for balance between value overestimation and underestimation.
    Li S; Tang Q; Pang Y; Ma X; Wang G
    Front Neurorobot; 2022; 16():1081242. PubMed ID: 36699950
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Optimum trajectory learning in musculoskeletal systems with model predictive control and deep reinforcement learning.
    Denizdurduran B; Markram H; Gewaltig MO
    Biol Cybern; 2022 Dec; 116(5-6):711-726. PubMed ID: 35951117
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Reinforcement learning for a biped robot based on a CPG-actor-critic method.
    Nakamura Y; Mori T; Sato MA; Ishii S
    Neural Netw; 2007 Aug; 20(6):723-35. PubMed ID: 17412559
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Efficient Actor-Critic Algorithm with Hierarchical Model Learning and Planning.
    Zhong S; Liu Q; Fu Q
    Comput Intell Neurosci; 2016; 2016():4824072. PubMed ID: 27795704
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Contribution of postural muscle tone to full expression of posture and locomotor movements: multi-faceted analyses of its setting brainstem-spinal cord mechanisms in the cat.
    Mori S
    Jpn J Physiol; 1989; 39(6):785-809. PubMed ID: 2698966
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Pontine-induced generalized suppression of postural muscle tone in a reflexively standing acute decerebrate cat.
    Oka T; Iwakiri H; Mori S
    Neurosci Res; 1993 Jul; 17(2):127-40. PubMed ID: 8233118
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.