These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
150 related articles for article (PubMed ID: 33080220)
41. UV resonance Raman spectroscopy of TTR(105-115): determination of the pKa of tyrosine. Pieridou GK; Hayes SC Phys Chem Chem Phys; 2009 Jul; 11(26):5302-9. PubMed ID: 19551197 [TBL] [Abstract][Full Text] [Related]
42. Activity and characterization of a pH-sensitive antimicrobial peptide. Hitchner MA; Santiago-Ortiz LE; Necelis MR; Shirley DJ; Palmer TJ; Tarnawsky KE; Vaden TD; Caputo GA Biochim Biophys Acta Biomembr; 2019 Oct; 1861(10):182984. PubMed ID: 31075228 [TBL] [Abstract][Full Text] [Related]
43. Determination of pKa values of individual histidine residues in proteins using mass spectrometry. Miyagi M; Nakazawa T Anal Chem; 2008 Sep; 80(17):6481-7. PubMed ID: 18665614 [TBL] [Abstract][Full Text] [Related]
44. Resonance Raman characterization of a stable tryptophan radical in an azurin mutant. Shafaat HS; Leigh BS; Tauber MJ; Kim JE J Phys Chem B; 2009 Jan; 113(1):382-8. PubMed ID: 19072535 [TBL] [Abstract][Full Text] [Related]
45. Hydrogen-tritium exchange and nuclear magnetic resonance titrations of the histidine residues in ribonuclease St and analysis of their microenvironment. Miyamoto K; Arata Y; Matsuo H; Narita K J Biochem; 1981 Jan; 89(1):49-59. PubMed ID: 6260763 [TBL] [Abstract][Full Text] [Related]
46. Changes in pKa values of individual histidine residues of human hemoglobin upon reaction with carbon monoxide. Ohe M; Kajita A Biochemistry; 1980 Sep; 19(19):4443-50. PubMed ID: 7407084 [TBL] [Abstract][Full Text] [Related]
47. Water as a probe for pH measurement in individual particles using micro-Raman spectroscopy. Cui X; Tang M; Wang M; Zhu T Anal Chim Acta; 2021 Nov; 1186():339089. PubMed ID: 34756261 [TBL] [Abstract][Full Text] [Related]
48. Probing the chemistries of the substrate and flavin ring system of p-hydroxybenzoate hydroxylase by raman difference spectroscopy. Clarkson J; Palfey BA; Carey PR Biochemistry; 1997 Oct; 36(41):12560-6. PubMed ID: 9376361 [TBL] [Abstract][Full Text] [Related]
49. Atomic view of the histidine environment stabilizing higher-pH conformations of pH-dependent proteins. Valéry C; Deville-Foillard S; Lefebvre C; Taberner N; Legrand P; Meneau F; Meriadec C; Delvaux C; Bizien T; Kasotakis E; Lopez-Iglesias C; Gall A; Bressanelli S; Le Du MH; Paternostre M; Artzner F Nat Commun; 2015 Jul; 6():7771. PubMed ID: 26190377 [TBL] [Abstract][Full Text] [Related]
50. Rieske protein from Thermus thermophilus: 15N NMR titration study demonstrates the role of iron-ligated histidines in the pH dependence of the reduction potential. Lin IJ; Chen Y; Fee JA; Song J; Westler WM; Markley JL J Am Chem Soc; 2006 Aug; 128(33):10672-3. PubMed ID: 16910649 [TBL] [Abstract][Full Text] [Related]
51. Determination of the pKa values of active-center cysteines, cysteines-32 and -35, in Escherichia coli thioredoxin by Raman spectroscopy. Li H; Hanson C; Fuchs JA; Woodward C; Thomas GJ Biochemistry; 1993 Jun; 32(22):5800-8. PubMed ID: 8099293 [TBL] [Abstract][Full Text] [Related]
52. Graphene oxide-based supramolecular hydrogels for making nanohybrid systems with Au nanoparticles. Adhikari B; Biswas A; Banerjee A Langmuir; 2012 Jan; 28(2):1460-9. PubMed ID: 22133019 [TBL] [Abstract][Full Text] [Related]
53. A proton nuclear magnetic resonance study of human serum albumin in the neutral pH region. Labro JF; Janssen LH Biochim Biophys Acta; 1986 Sep; 873(2):267-78. PubMed ID: 3756177 [TBL] [Abstract][Full Text] [Related]
54. Switchable Hydrolase Based on Reversible Formation of Supramolecular Catalytic Site Using a Self-Assembling Peptide. Zhang C; Shafi R; Lampel A; MacPherson D; Pappas CG; Narang V; Wang T; Maldarelli C; Ulijn RV Angew Chem Int Ed Engl; 2017 Nov; 56(46):14511-14515. PubMed ID: 28941038 [TBL] [Abstract][Full Text] [Related]
55. Structure changes in hemoglobin upon deletion of C-terminal residues, monitored by resonance Raman spectroscopy. Wang D; Spiro TG Biochemistry; 1998 Jul; 37(28):9940-51. PubMed ID: 9665699 [TBL] [Abstract][Full Text] [Related]
56. Raman spectroscopy of filamentous bacteriophage Ff (fd, M13, f1) incorporating specifically-deuterated alanine and tryptophan side chains. Assignments and structural interpretation. Aubrey KL; Thomas GJ Biophys J; 1991 Dec; 60(6):1337-49. PubMed ID: 1777561 [TBL] [Abstract][Full Text] [Related]
57. Theoretical and pH dependent surface enhanced Raman spectroscopy study on caffeine. Pavel I; Szeghalmi A; Moigno D; Cîntă S; Kiefer W Biopolymers; 2003; 72(1):25-37. PubMed ID: 12400089 [TBL] [Abstract][Full Text] [Related]
58. Correlation proton magnetic resonance studies at 250 MHz of bovine pancreatic ribonuclease. II. pH and inhibitor-induced conformational transitions affecting histidine-48 and one tyrosine residue of ribonuclease A. Markley JL Biochemistry; 1975 Aug; 14(16):554-61. PubMed ID: 240391 [TBL] [Abstract][Full Text] [Related]
59. Evidence for a bound water molecule next to the retinal Schiff base in bacteriorhodopsin and rhodopsin: a resonance Raman study of the Schiff base hydrogen/deuterium exchange. Deng H; Huang L; Callender R; Ebrey T Biophys J; 1994 Apr; 66(4):1129-36. PubMed ID: 8038384 [TBL] [Abstract][Full Text] [Related]
60. Direct evidence for the exploitation of an alpha-helix in the catalytic mechanism of triosephosphate isomerase. Lodi PJ; Knowles JR Biochemistry; 1993 Apr; 32(16):4338-43. PubMed ID: 8476863 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]