These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

118 related articles for article (PubMed ID: 33080507)

  • 1. Boundary loss for highly unbalanced segmentation.
    Kervadec H; Bouchtiba J; Desrosiers C; Granger E; Dolz J; Ben Ayed I
    Med Image Anal; 2021 Jan; 67():101851. PubMed ID: 33080507
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Automatic liver segmentation by integrating fully convolutional networks into active contour models.
    Guo X; Schwartz LH; Zhao B
    Med Phys; 2019 Oct; 46(10):4455-4469. PubMed ID: 31356688
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Generalised Dice Overlap as a Deep Learning Loss Function for Highly Unbalanced Segmentations.
    Sudre CH; Li W; Vercauteren T; Ourselin S; Jorge Cardoso M
    Deep Learn Med Image Anal Multimodal Learn Clin Decis Support (2017); 2017; 2017():240-248. PubMed ID: 34104926
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Loss odyssey in medical image segmentation.
    Ma J; Chen J; Ng M; Huang R; Li Y; Li C; Yang X; Martel AL
    Med Image Anal; 2021 Jul; 71():102035. PubMed ID: 33813286
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Esophagus segmentation in CT via 3D fully convolutional neural network and random walk.
    Fechter T; Adebahr S; Baltas D; Ben Ayed I; Desrosiers C; Dolz J
    Med Phys; 2017 Dec; 44(12):6341-6352. PubMed ID: 28940372
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Constrained-CNN losses for weakly supervised segmentation.
    Kervadec H; Dolz J; Tang M; Granger E; Boykov Y; Ben Ayed I
    Med Image Anal; 2019 May; 54():88-99. PubMed ID: 30851541
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Psi-Net: Shape and boundary aware joint multi-task deep network for medical image segmentation.
    Murugesan B; Sarveswaran K; Shankaranarayana SM; Ram K; Joseph J; Sivaprakasam M
    Annu Int Conf IEEE Eng Med Biol Soc; 2019 Jul; 2019():7223-7226. PubMed ID: 31947500
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Deep-learning convolutional neural network: Inner and outer bladder wall segmentation in CT urography.
    Gordon MN; Hadjiiski LM; Cha KH; Samala RK; Chan HP; Cohan RH; Caoili EM
    Med Phys; 2019 Feb; 46(2):634-648. PubMed ID: 30520055
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Urinary bladder segmentation in CT urography using deep-learning convolutional neural network and level sets.
    Cha KH; Hadjiiski L; Samala RK; Chan HP; Caoili EM; Cohan RH
    Med Phys; 2016 Apr; 43(4):1882. PubMed ID: 27036584
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Calibrating segmentation networks with margin-based label smoothing.
    Murugesan B; Liu B; Galdran A; Ayed IB; Dolz J
    Med Image Anal; 2023 Jul; 87():102826. PubMed ID: 37146441
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A multiple-channel and atrous convolution network for ultrasound image segmentation.
    Zhang L; Zhang J; Li Z; Song Y
    Med Phys; 2020 Dec; 47(12):6270-6285. PubMed ID: 33007105
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Reducing the Hausdorff Distance in Medical Image Segmentation With Convolutional Neural Networks.
    Karimi D; Salcudean SE
    IEEE Trans Med Imaging; 2020 Feb; 39(2):499-513. PubMed ID: 31329113
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Convolutional neural network-based pelvic floor structure segmentation using magnetic resonance imaging in pelvic organ prolapse.
    Feng F; Ashton-Miller JA; DeLancey JOL; Luo J
    Med Phys; 2020 Sep; 47(9):4281-4293. PubMed ID: 32638370
    [TBL] [Abstract][Full Text] [Related]  

  • 14. ARPM-net: A novel CNN-based adversarial method with Markov random field enhancement for prostate and organs at risk segmentation in pelvic CT images.
    Zhang Z; Zhao T; Gay H; Zhang W; Sun B
    Med Phys; 2021 Jan; 48(1):227-237. PubMed ID: 33151620
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Deep morphology aided diagnosis network for segmentation of carotid artery vessel wall and diagnosis of carotid atherosclerosis on black-blood vessel wall MRI.
    Wu J; Xin J; Yang X; Sun J; Xu D; Zheng N; Yuan C
    Med Phys; 2019 Dec; 46(12):5544-5561. PubMed ID: 31356693
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The patchwork engine: image segmentation from shape symmetries.
    van Tonder GJ; Ejima Y
    Neural Netw; 2000 Apr; 13(3):291-303. PubMed ID: 10937963
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Echocardiographic image multi-structure segmentation using Cardiac-SegNet.
    Lei Y; Fu Y; Roper J; Higgins K; Bradley JD; Curran WJ; Liu T; Yang X
    Med Phys; 2021 May; 48(5):2426-2437. PubMed ID: 33655564
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Breast pectoral muscle segmentation in mammograms using a modified holistically-nested edge detection network.
    Rampun A; López-Linares K; Morrow PJ; Scotney BW; Wang H; Ocaña IG; Maclair G; Zwiggelaar R; González Ballester MA; Macía I
    Med Image Anal; 2019 Oct; 57():1-17. PubMed ID: 31254729
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Automatic prostate segmentation using deep learning on clinically diverse 3D transrectal ultrasound images.
    Orlando N; Gillies DJ; Gyacskov I; Romagnoli C; D'Souza D; Fenster A
    Med Phys; 2020 Jun; 47(6):2413-2426. PubMed ID: 32166768
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Automated left ventricular myocardium segmentation using 3D deeply supervised attention U-net for coronary computed tomography angiography; CT myocardium segmentation.
    Jun Guo B; He X; Lei Y; Harms J; Wang T; Curran WJ; Liu T; Jiang Zhang L; Yang X
    Med Phys; 2020 Apr; 47(4):1775-1785. PubMed ID: 32017118
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.