These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

270 related articles for article (PubMed ID: 33081020)

  • 1. Hot-Rolling and a Subsequent Direct-Quenching Process Enable Superior High-Cycle Fatigue Resistance in Ultra-High Strength Low Alloy Steels.
    Baek MS; Kim YK; Park TW; Ham J; Lee KA
    Materials (Basel); 2020 Oct; 13(20):. PubMed ID: 33081020
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Achieving 2.2 GPa Ultra-High Strength in Low-Alloy Steel Using a Direct Quenching and Partitioning Process.
    Niu G; Jin D; Wang Y; Chen H; Gong N; Wu H
    Materials (Basel); 2023 Dec; 16(24):. PubMed ID: 38138675
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Influence of Prior Martensite on Bainite Transformation, Microstructures, and Mechanical Properties in Ultra-Fine Bainitic Steel.
    Guo H; Feng X; Zhao A; Li Q; Ma J
    Materials (Basel); 2019 Feb; 12(3):. PubMed ID: 30759721
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Microstructure, Mechanical Properties, and Corrosion Behavior of Ultra-Low Carbon Bainite Steel with Different Niobium Content.
    Zong Y; Liu CM
    Materials (Basel); 2021 Jan; 14(2):. PubMed ID: 33435347
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The Influence of Different Microstructure on Tensile Deformation and Acoustic Emission Behaviors of Low-Alloy Steel.
    Ma W; Luo H; Han Z; Zhang L; Yang X
    Materials (Basel); 2020 Nov; 13(21):. PubMed ID: 33167471
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Preparation and Mechanical Behavior of Ultra-High Strength Low-Carbon Steel.
    Lv Z; Qian L; Liu S; Zhan L; Qin S
    Materials (Basel); 2020 Jan; 13(2):. PubMed ID: 31963667
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The Fabrication of Ultrahigh-Strength Steel with a Nanolath Structure via Quenching-Partitioning-Tempering.
    Xu W; Xie L; Liu X; Wang J; Xu Y; He M; Hu K; Liu C; Yu W
    Materials (Basel); 2024 Mar; 17(5):. PubMed ID: 38473632
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Super-strong dislocation-structured high-carbon martensite steel.
    Sun JJ; Liu YN; Zhu YT; Lian FL; Liu HJ; Jiang T; Guo SW; Liu WQ; Ren XB
    Sci Rep; 2017 Jul; 7(1):6596. PubMed ID: 28747764
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effect of PFM Firing Cycles on the Mechanical Properties, Phase Composition, and Microstructure of Nickel-Chromium Alloy.
    Anwar M; Tripathi A; Kar SK; Sekhar KC
    J Prosthodont; 2015 Dec; 24(8):634-41. PubMed ID: 26215348
    [TBL] [Abstract][Full Text] [Related]  

  • 10. On the effect of pre-strain and pre-fatigue on the monotonic behaviour of ultra-high strength steels.
    Cockings HL; Cockings BJ; Perkins KM
    Heliyon; 2020 Jul; 6(7):e04440. PubMed ID: 32695913
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Ultrahigh Charpy impact toughness (~450J) achieved in high strength ferrite/martensite laminated steels.
    Cao W; Zhang M; Huang C; Xiao S; Dong H; Weng Y
    Sci Rep; 2017 Feb; 7():41459. PubMed ID: 28150692
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Surface Nanostructuring of a CuAlBe Shape Memory Alloy Produces a 10.3 ± 0.6 GPa Nanohardness Martensite Microstructure.
    Figueroa CG; Jacobo VH; Cortés-Pérez J; Schouwenaars R
    Materials (Basel); 2020 Dec; 13(24):. PubMed ID: 33327570
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A Tailored Preparation Method of Variable Strength for Ultra-High-Strength Steel Sheet and Mapping Mechanism between Process and Property.
    Quan GZ; Yu YZ; Zhang Y; Zhang YQ; Xiong W
    Materials (Basel); 2022 Sep; 15(19):. PubMed ID: 36233959
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Microstructure, Tensile Properties, and Fracture Toughness of an In Situ Rolling Hybrid with Wire Arc Additive Manufacturing AerMet100 Steel.
    Lei L; Ke L; Xiong Y; Liu S; Du L; Chen M; Xiao M; Fu Y; Yao F; Yang F; Wang K; Li B
    Micromachines (Basel); 2024 Apr; 15(4):. PubMed ID: 38675305
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The Effect of Direct Quenching on the Microstructure and Mechanical Properties of NiCrMo and Cu-Bearing High-Strength Steels.
    Zhou N; Chai F; Luo X; Wang W; Gao F
    Materials (Basel); 2024 Mar; 17(6):. PubMed ID: 38541550
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The Effect of Hot Working on the Mechanical Properties of High Strength Biomedical Ti-Nb-Ta-Zr-O Alloy.
    Preisler D; Janeček M; Harcuba P; Džugan J; Halmešová K; Málek J; Veverková A; Stráský J
    Materials (Basel); 2019 Dec; 12(24):. PubMed ID: 31861121
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Rolling Contact Fatigue Performances of Carburized and High-C Nanostructured Bainitic Steels.
    Wang Y; Zhang F; Yang Z; Lv B; Zheng C
    Materials (Basel); 2016 Nov; 9(12):. PubMed ID: 28774081
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Microstructure, mechanical properties, biocompatibility, and in vitro corrosion and degradation behavior of a new Zn-5Ge alloy for biodegradable implant materials.
    Tong X; Zhang D; Zhang X; Su Y; Shi Z; Wang K; Lin J; Li Y; Lin J; Wen C
    Acta Biomater; 2018 Dec; 82():197-204. PubMed ID: 30316837
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Quenching and Tempering-Dependent Evolution on the Microstructure and Mechanical Performance Based on a Laser Additively Manufactured 12CrNi2 Alloy Steel.
    Zhang W; Shang X; Chen X; Chen S; Liu Z; Zhang L
    Materials (Basel); 2023 Apr; 16(9):. PubMed ID: 37176325
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Study of Quenching and Partitioning (Q&P) and Ultrasonic Surface Rolling (USR) Process on Microstructure and Mechanical Property of a High-Strength Martensitic Steel.
    Hou Y; Duan C; Li X; Qu S
    Materials (Basel); 2024 Jun; 17(11):. PubMed ID: 38894015
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.